Changing the Gaussian Distribution from cartesian to polar coordinates

stepheckert
Messages
6
Reaction score
0

Homework Statement


"You are now going to show that, in the Gaussian distribution P(x)=Ae^(-Bx^2) the constant A is equal to sqrt(B/Pi). Do this by insisting that the sum over probabilities must equal unity, Integral(P(x)dx)=1. To make this difficult integral easier, frst square it then combine the integrands and turn the area integral, over x and y into an area integral over polar coordinates.


The Attempt at a Solution


The back of the book has this answer:
1=A^2Integral(e^(-B(x^2+y^2)dxdy)=A^2Integral((e^-Br^2)(r)drdθ)=PiA^2/B.

I understand the first piece but I don't understand how to get from these cartesian to polar coordinates at all, and I'm very confused as to how they got the final answer from the last integral.

Please Help!
Thanks!
 
Physics news on Phys.org
You should review changing coordinates, which was covered in your calculus course.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top