Charge entering into the field between capacitor plates

AI Thread Summary
A negative charge of mass m enters a uniform electric field between two parallel plates, and the problem requires finding the maximum charge to prevent it from hitting a plate. The discussion emphasizes that the work-energy theorem is not applicable due to the need for spatial coordinate conditions, which are not addressed by this theorem. Instead, kinematic equations for projectile motion should be used, considering vertical acceleration due to the electric field. The charge must cover a horizontal distance L while ensuring its vertical displacement remains less than the plate separation d. The final velocity of the charge is not zero upon exiting the field, and the equivalent gravitational acceleration must be derived from the electrostatic force.
Abhimessi10
Messages
43
Reaction score
0

Homework Statement


A negative charge of mass m enters into the field between two deflecting parallel plates with length 'l' separated by distance 'd' with a velocity 'v'.Assuming electric field to be uniform,find the maximum charge so that it will not hit a plate

Homework Equations


Kinematic and electrostatic equations[/B]

The Attempt at a Solution


F=qE
Work done=qEd
qEd=1/2mv^2
q=mv^2/Ed

I am not sure this is right and that is why i require help
 
Physics news on Phys.org
What is the angle of the velocity with the electric field vector? Is there a figure provided it with this? Can you upload the figure/image?
If it is as I suspect, that the velocity is initially perpendicular to the e-field, then I am afraid using the work energy theorem will get you nowhere. You need to use kinematics equations for projectile motion , with vertical acceleration ##g-\frac{Eq}{m}##, initial velocity ##v_{0x}=v## ,and ##\theta=0##.
 
Delta² said:
What is the angle of the velocity with the electric field vector? Is there a figure provided it with this? Can you upload the figure/image?
If it is as I suspect, that the velocity is initially perpendicular to the e-field, then I am afraid using the work energy theorem will get you nowhere. You need to use kinematics equations for projectile motion , with vertical acceleration ##g-\frac{Eq}{m}##, initial velocity ##v_{0x}=v## ,and ##\theta=0##.

Please see the diagram belowhttps://ibb.co/bDJxRe
IMG_20180916_213551.jpg

Can you elaborate on why WE theorem cannot be used?
Note:gravity can be neglected
 

Attachments

  • IMG_20180916_213551.jpg
    IMG_20180916_213551.jpg
    37.8 KB · Views: 484
Last edited by a moderator:
Ok I see now we neglect the gravitational force, so our acceleration is just ##a=\frac{Eq}{m} (1)##. Indeed v is perpendicular to e-field and the charge enters exactly at the bottom of the plates.
The exercise asks you the maximum charge so that it doesn't hit a plate, how work energy theorem could possibly help us with what the exercise asks? There is no way to use what the exercise ask us (not to hit a plate) together with WE theorem.
Instead use kinematics equations and determine what the charge should be so that
$$vt_0=L$$ , $$d\leq\frac{1}{2}at_0^2$$

Solve the first for ##t_0## and replace it in the second equation. Also use equation (1)
 
Last edited:
Just to say something more about why WE leads nowhere here.

WE theorem is about initial and final velocities and work done. The problem here deals with conditions on the spatial coordinates of the particle, those spatial coordinates appear nowhere in the WE theorem, that's why it can't be used here.
 
Delta² said:
Just to say something more about why WE leads nowhere here.

WE theorem is about initial and final velocities and work done. The problem here deals with conditions on the spatial coordinates of the particle, those spatial coordinates appear nowhere in the WE theorem, that's why it can't be used here.
Cool. But which kinematic equation do i exactly use here?
I am ending up with more than one variable to solve.
 
Abhimessi10 said:
Cool. But which kinematic equation do i exactly use here?
I am ending up with more than one variable to solve.
read again post #4 I edited it abit
 
Delta² said:
read again post #4 I edited it abit

What is the use of L in this equation?

And is the final velocity of the charge 0?
 
No the velocity of the charge is not 0 when it exits the field.
In order for the particle not to hit the plate, its movement must be such so that when it has cover L distance in the x-axis and thus ready to exit the field, the distance covered in the y-axis must be smaller than d. Or more simply, when its x-coordinate becomes L, its y-coordinate must be smaller than d.
 
  • #10
Analogy: a mass is thrown horizontally from a platform d meters above the ground. How far will it go horizontally before it hits the ground?
Thing here is you can't use g = 9.81 m/sec2, you need to come up with the equivalent of g due to electrostatic as opposed to gravitational attraction.
 
Back
Top