Engineering [Circuits] Solving a KCL Problem

  • Thread starter Thread starter ainster31
  • Start date Start date
  • Tags Tags
    Circuits Kcl
AI Thread Summary
The discussion centers on a circuit problem involving Kirchhoff's Current Law (KCL) and the confusion surrounding the V2 node, where three currents appear to flow in without any flowing out. It clarifies that there is no contradiction, as the node's voltage (V2 = 62.89 V) indicates that current does indeed flow out of the node through resistors to lower potentials. The importance of consistently assuming current directions when writing equations is emphasized, as this helps avoid confusion. Ultimately, the calculations reveal that while 5.19 A enters node V2, only 0.29 A and 4.90 A leave, validating the circuit's existence. Understanding the actual current flow resolves the initial misunderstanding.
ainster31
Messages
158
Reaction score
1

Homework Statement



FEoNQ4I.png


Homework Equations





The Attempt at a Solution



sqMF18w.png


Here is what I don't understand: how can this circuit exist? If you look at the V2 node, there are 3 currents going in but none going out. Isn't this a contradiction? From what I've heard, you can arbitrarily draw current arrows and if the direction of the arrows is wrong, you'll just get a negative current. But don't you have to at least be consistent in the rotation? If you look at the bottom left mesh, the currents are going clockwise and then there is a current that is going counter-clockwise.
 
Physics news on Phys.org
ainster31 said:
Here is what I don't understand: how can this circuit exist? If you look at the V2 node, there are 3 currents going in but none going out. Isn't this a contradiction? From what I've heard, you can arbitrarily draw current arrows and if the direction of the arrows is wrong, you'll just get a negative current. But don't you have to at least be consistent in the rotation? If you look at the bottom left mesh, the currents are going clockwise and then there is a current that is going counter-clockwise.

So long as you're consistent in writing the math according to your assumed currents, the math will always take care of itself and present you with the right values (positive or negative) for each.

In fact, when writing node equations it's actually easier to maintain consistency by always assuming that all currents are flowing either into or out of a given node. That way you never trip up by forgetting which one or ones you had going in and which ones going out. Later, if you need the value of a particular current, you use solved-for node voltages and Ohm's law for a given branch.
 
ainster31 said:
Here is what I don't understand: how can this circuit exist? If you look at the V2 node, there are 3 currents going in but none going out. Isn't this a contradiction?

No...there isn't any contradiction .The confusion clears as soon as you calculate V2 ,which you haven't .V2 = 62.89 V which means it is higher than both 60V and V1 .So,in reality a current of magnitude 0.29A flows from V2 to 60V across the 10Ω resistor and 4.90A from V2 to V1 across 2Ω resistor .

In other words at node V2 ,current of magnitude 5.19A enters whereas 0.29A and 4.90A leave .

It is your assumption that all currents are flowing into node V2.But in reality that is not the case .

Hope that helps
 
Last edited:

Similar threads

Replies
11
Views
5K
Replies
16
Views
3K
Replies
5
Views
2K
Replies
4
Views
2K
Replies
15
Views
4K
Replies
7
Views
3K
Back
Top