Classical Mechanics - Coriolis Force

  • Thread starter macrsp
  • Start date
  • #1
2
0

Homework Statement


This is a fairly general problem that came up while trying to model a system. Given a rotating disk and an inertially fixed object, how is the fictional coriolis force handled? For example, if there is a dot on the ground below a sheet of transparent plastic rotating at speed [itex]\omega[/itex], does an observer on the sheet of plastic observe the coriolis affect, and why or why not?


Homework Equations



The relevant subset of the relevant equation,

aRotating = - 2[itex]\omega[/itex] x VRotating - [itex]\omega[/itex] x ([itex]\omega[/itex] x XRotating)

The Attempt at a Solution



Well, the motion can be correctly described by the
- [itex]\omega[/itex] x ([itex]\omega[/itex] x XRotating)
portion of the equation.

However, because there is apparent rotation, there is a VRotating, so
- 2[itex]\omega[/itex] x VRotating
is non zero, which makes no sense. I'm probably making a very simple mistake somewhere, and I suspect that it has to do with V being the velocity in the fixed frame, not the rotating frame, but all the explanations of the coriolis equation seem to state it with the velocity being from the rotating frame.
 
Last edited:

Answers and Replies

Related Threads on Classical Mechanics - Coriolis Force

  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
1
Views
3K
Replies
2
Views
6K
Replies
2
Views
4K
Replies
10
Views
2K
  • Last Post
Replies
0
Views
274
Replies
11
Views
3K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
12
Views
3K
Top