Classical mechanics - finding distance D in terms of velocity

Rumor
Messages
11
Reaction score
0

Homework Statement



"A passenger (mass m) initially at rest steps out of an airplane. Assume down is the positive x-axis and put the origin at the airplane. Assume the air resistance force is linear in the velocity so F(air)= -mbv. Find the distance D he has fallen when his velocity is v."

Homework Equations



Equations of motion

The "vdv/dx trick": d2z/dt2 = (z-dot)*(d(z-dot)/dz)

F(tot) = ma

F(air) = -mbv

Weight = mg

The Attempt at a Solution



Here's how far I've gotten:

Since the skydiver is only falling in the x direction, there's only one equation of motion, which I found to be ma = -mbv + mg [or, alternatively, m(x-double dot) = -mb(x-dot) + mg]. Now, I know I want the relation of distance and velocity, without time, so I use the "vdv/dx" trick (so that there's no longer time in the equation).

That makes this mv*(dv/dx) = -mbv + mg, or m(x-dot)*(d(x-dot)/dx) = -mb(x-dot) + mg. I rearranged this to get dx = (-m/b)*(vdx/v-(mg/b)), where -(mg/b) is the terminal velocity.
I'm sorry for all the writing, but am I correct so far? And how do I continue to solve the problem from here? Any help would be appreciated.
 
Last edited:
Physics news on Phys.org
First off, divide through by m to simplify the expression a bit. Secondly, can you separate variables, i.e have things with "v" on one side and "x" on the other?
 
First, since m is common to every term, I would eliminate that to make things easier. Next, you have vdv/dx = g-bv. Try to isolate v and dv on one side, and dx on the other side.
 
Alright, so...

I went back and simplified what I had first and ended up with v(dv/dx) = -bv - g. So, after isolating dz, I end up with dz = -(vdv/(bv+g)).

Now, I know my next step is to integrate this, but I'm not sure what the limits would be.
 
The problem tells you what the limits should be.

"A passenger (mass m) initially at rest steps out of an airplane. Assume down is the positive x-axis and put the origin at the airplane. Assume the air resistance force is linear in the velocity so F(air)= -mbv. Find the distance D he has fallen when his velocity is v."
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top