Closure of { (x,sin(1/x) : 0<x<=1 }?

  • Thread starter Thread starter filter54321
  • Start date Start date
  • Tags Tags
    closure
filter54321
Messages
36
Reaction score
0

Homework Statement


What is the closure of F = { (x,sin(1/x) : 0<x<=1 }?


Homework Equations


None


The Attempt at a Solution


F is a squiggly line in R2. For every point in F (every point on the squiggly line) an open ball about that point will contain point both in F and in the complement of F. Therefore F is it's own boundary.

The closure of a set is equal to the unions of the boundary of the set and the set itself
Sclosure = dS U S

Therefore Fclosure = dF U F = F U F = F

My professor indicated that this line of reasoning is flawed. I'm not sure why nor am I sure what a correct anyswer would be. Any help would be appreciated.
 
Physics news on Phys.org
What do you know about sin(1/x)?

Look at the graph again. It does something very interesting.
 
I know what it looks like, it's a common example in calculus. It bounces up and down as you go to 0 with ever increasing frequency. How does that have anything to do with the boundary methodology outlined in my original post?
 
Use the fact that Cl(F) = lim(F) = {x : x is a limit of F}. Now let x approach any value in (0,1] and look at the set of F's limits.
 
The graph of y = sin(1/x), in particular that it oscillates with increasing frequency as x gets closer to 0, has everything to do with the boundary.

filter54321 said:
F is a squiggly line in R2. For every point in F (every point on the squiggly line) an open ball about that point will contain point both in F and in the complement of F. Therefore F is it's own boundary.

The problem is right here. All you've shown is that F is a subset of its boundary. There may be other points of R2 in the boundary.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top