Coefficient of Static Friction = tan (angle of incline)

AI Thread Summary
The discussion centers on proving that the coefficient of static friction (μ) equals the tangent of the angle of incline (tanθ). The experiment involved measuring the force required to initiate movement of a wooden block on an incline, with angles ranging from 10 to 37.5 degrees. The derived equation μ = (mg sin(θ) + Mg)/(mg cos(θ)) simplifies to μ = tanθ + M/(m cosθ), leading to confusion about the impossibility of equating the two forms. Clarifications suggest that while μ = tanθ holds true under specific conditions, the experiment's setup may require adjustments to isolate μ effectively. Ultimately, the goal is to graphically demonstrate that μ equals tanθ, but current observations do not support this.
lem0ncheezcake
Messages
3
Reaction score
0

Homework Statement


I am trying to prove that the coefficient of static friction is equal to the tan of the angle of incline. (You can find the proof of this from )

I set the angle of incline as my independent variable and had an angle range from 10 to 37.5 degrees. After setting the slope to different angles, I measured the extra force required to cause the wooden block to begin to move on the slope. I did this by connecting a string to the wooden block and to a container that could be filled with sand (using a pulley to connect them).

Homework Equations



μ = (mg sin(θ) + Mg)/(mg cos (θ))

where m is the mass of the wooden block and M is the mass of the handing container and sand.

This simplifies down to μ = tanθ + M/(m cosθ)

However, it is also known that μ = tanθ

Equating the two equations we get tanθ + M/(m cosθ) = tanθ, which is impossible. Can anyone explain what I've down wrong here?

The Attempt at a Solution



I tried manipulating the equation,

M/(m cosθ) = μ - tanθ

=> M = μmcosθ - msinθ

=> M = m(μcosθ - sinθ)

Ultimately, I aim to draw a graph which shows μ = tanθ, however, with the values I obtained so far, no such graph can be drawn.

I would really appreciate it if someone could help me!
 
Last edited:
Physics news on Phys.org
Hello LCC, :welcome:

Nice experiment ! Well described in this your first post, kudos !
lem0ncheezcake said:
to cause the wooden block to begin to move on the slope
Sounds like you filled until m started to move upwards along the slope. am I right ? If so, do ##\mu m g \cos\theta## and ##mg\sin\theta## point in opposite directions, as your equation suggests ?
 
BvU said:
Hello LCC, :welcome:

Nice experiment ! Well described in this your first post, kudos !
Sounds like you filled until m started to move upwards along the slope. am I right ? If so, do ##\mu m g \cos\theta## and ##mg\sin\theta## point in opposite directions, as your equation suggests ?

Hi BvU,

Yes, you got the idea right, except I set it up so that m could start to move downwards along the slope.

I am not sure to be honest. I do know however, mgcosθ and mgsinθ are perpendicular to each other because they represent the vertical and horizontal components of force due to the weight of m. Does this help?
 
lem0ncheezcake said:
However, it is also known that μ = tanθ
This is for the situation as in the video when there is no extra force involved !
lem0ncheezcake said:
I set it up so that m could start to move downwards
Ok, so your μ = tanθ + M/(m cosθ) has the right sign and you have a set of observations of M as a function of ##\theta##. You can investigate if ##\mu## depends on ##\theta## (*). But if you want to show that ##\mu = \tan\theta## directly, you'll have to find a way to vary ##\mu## and work with M = 0.

(*)
##\mu = \tan\theta## doesn't mean that ##\mu## varies with ##\theta##; it means that the angle at which sliding is about to start has a tangent with a value that is equal to ##\mu##.
 
  • Like
Likes lem0ncheezcake
If the pulley is at the top of the incline and you are adding mass M to try to pull the block up the incline, then the force balance on the block is
$$Mg-mg\sin{\theta} = F \leq mg\mu cos{\theta}$$where F is the friction force. So, the coefficient of friction satisfies the inequality
$$ \mu \geq \frac{M}{m}\sec{\theta}-\tan{\theta} $$and M satisfies the inequality:
$$M\leq m(\sin{\theta} + \mu cos{\theta})$$
The equal sign applies when the block is just on the verge of sliding.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...

Similar threads

Back
Top