Colliding Binary Star (GPE Problem)

AI Thread Summary
The discussion revolves around a physics problem involving two identical stars and their gravitational interaction as they approach each other. The user attempts to apply conservation of energy to find the speed of the stars just before collision but struggles to arrive at the correct answer of 9.7*10^4 m/s. The error identified is the overcounting of gravitational potential energy, as the user mistakenly accounts for it twice in their calculations. This highlights the importance of accurately applying formulas and understanding the principles of energy conservation in gravitational systems. The clarification provided resolves the confusion regarding the potential energy calculations.
macaholic
Messages
21
Reaction score
0
I was looking over my old physics course problems, and I can't figure out how I'm doing this one wrong.

Homework Statement


Two identical stars, each having mass and radius M=2*10^29 kg and R = 7 *10^8 m are initially at rest in outer space. Their initial separation (between centers) is the same as the distance between our sun and the earth, D = 1.5*10^11 m. Their gravitational interaction causes the stars to be pulled toward one another. Find the speed of the stars just before they collide, i.e. when their centers are a distance 2R apart.

Homework Equations


GPE = \frac{- G m_1 m_2}{r}
KE = \frac{m v^2}{2}

The Attempt at a Solution


I tried just doing conservation of energy, i.e.

GPE + GPE = GPE + GPE + KE + KE, or more explicitly:
\frac{-G M^2}{D} + \frac{-G M^2}{D} = \frac{-G M^2}{2R} + \frac{-G M^2}{2R} + \frac{1}{2} M v^2 + \frac{1}{2} M v^2

However solving this does NOT get the right answer, which is 9.7*10^4 m/s.

Can anyone point out what I'm doing wrong? I can't find the flaw in my logic... Does it have to do with where I'm setting zero potential energy? I tried accounting for this by doing the problem another way:
\Delta GPE = \Delta KE
But that seems to be equivalent to what I did above.
 
Physics news on Phys.org
macaholic said:
I was looking over my old physics course problems, and I can't figure out how I'm doing this one wrong.

Homework Statement


Two identical stars, each having mass and radius M=2*10^29 kg and R = 7 *10^8 m are initially at rest in outer space. Their initial separation (between centers) is the same as the distance between our sun and the earth, D = 1.5*10^11 m. Their gravitational interaction causes the stars to be pulled toward one another. Find the speed of the stars just before they collide, i.e. when their centers are a distance 2R apart.

Homework Equations


GPE = \frac{- G m_1 m_2}{r}
KE = \frac{m v^2}{2}

The Attempt at a Solution


I tried just doing conservation of energy, i.e.

GPE + GPE = GPE + GPE + KE + KE, or more explicitly:
\frac{-G M^2}{D} + \frac{-G M^2}{D} = \frac{-G M^2}{2R} + \frac{-G M^2}{2R} + \frac{1}{2} M v^2 + \frac{1}{2} M v^2

However solving this does NOT get the right answer, which is 9.7*10^4 m/s.

Can anyone point out what I'm doing wrong? I can't find the flaw in my logic... Does it have to do with where I'm setting zero potential energy? I tried accounting for this by doing the problem another way:
\Delta GPE = \Delta KE
But that seems to be equivalent to what I did above.

You are overcounting the potential energy. The gravitational potential energy of two masses of mass m separated by a distance r is -G*m*m/r. It's not twice that. You are counting the same thing twice.
 
*facepalm*. Thank you! I feel very silly now.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top