Commutability of Tensor components , an ambigious situation

  • Thread starter Thread starter Somali_Physicist
  • Start date Start date
  • Tags Tags
    Components Tensor
Somali_Physicist
Messages
117
Reaction score
13

Homework Statement


I have been working on defining the transpose in a tensorial view using the kroneck delta tensor.

Homework Equations


I will use tensor notation

The Attempt at a Solution


Let Tjk be a 2nd level tensor:

(Tjk)TP = Tkj

My first attempt is:
δjkTjk δkj = Tkj

However if tensor components are commutable by nature the above expression can be

δjkδkj Tjk = δjkTkk

the latter expression becoming ambigious, I can replace either k and acquire:
δjkTjj = Tjk
or
δjkTjj = Tkj
 
Physics news on Phys.org
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top