Comparing energy lost by the battery & energy gained by the capacitor.

AI Thread Summary
When a parallel-plate capacitor is connected to a battery, the energy lost by the battery and the energy gained by the capacitor are not equal due to energy losses in the circuit. The battery delivers energy equal to QV, while the capacitor stores only half of that energy as E = 1/2 CV^2. This discrepancy arises from resistive losses in the circuit, which include ohmic resistance and other forms of energy dissipation. In ideal scenarios with superconductors and no resistance, the energy dynamics differ, leading to a more complex interaction involving inductance. Ultimately, the energy conservation principle holds, but the distribution of energy between the battery, capacitor, and resistive elements must be accounted for.
nazmulhasanshipon
Messages
40
Reaction score
3
Imagine the two terminal of a *parallel-plate capacitor* are connected to the two terminal of a battery with electric potential difference #V#. If the capacitance of the capacitor is #C#, and the area of each plate is $A$. In this process would the energy lost by the battery and the stored energy of the capacitor be the same or different? Please explain.

Someone pointed that the energy lost by the battery is #V=\frac{Qd}{\epsilon A}# (because the electric potential difference would be used to to raise the potential difference between the plates) and energy gained by the capacitor is #E=\frac{1}{2}QV#. And therefore they are different. But I doubt this since the energy should be conserved.
 
Physics news on Phys.org
Someone pointed that the energy lost by the battery is ##V=\frac{Qd}{\epsilon A}## (because the electric potential difference would be used to to raise the potential difference between the plates) and energy gained by the capacitor is ##E=\frac{1}{2}QV##. And therefore they are different. But I doubt this since the energy should be conserved.
 
If you are assuming that the battery is perfect voltage source (i.e. no losses, no inductance), then the question isn't well posed, it's not physically realizable. You would have to have an infinite current flow instantaneously. That is why the answers disagree between conservation of charge and conservation of energy.

For real circuits there are losses, which you can model with a resistor. In that case you will find that the energy lost is equal to the energy transferred.

If you built this out of superconductors, you would then need to include the inductance between the components, which is fundamental to moving charges, you can't get rid of it. In this case you will have a simple harmonic oscillator with infinite Q. The peak voltage on the capacitor will be twice the voltage step applied (a sinusoid) which accounts for the missing energy. When the capacitor voltage is equal to the battery voltage there will be current flowing through the inductor which will contain the missing energy in its magnetic field. That peak current will be the voltage step divided by the characteristic impedance ##Z_o = \sqrt{\frac{L}{C}}##.

So, your circuit needs to also have inductance and maybe resistance too. With these assumptions there isn't a conflict between conservation of charge (##Q=CV##) and conservation of energy (##E=\frac{1}{2}LI^2+\frac{1}{2}CV^2+\int{RI^2}##).
 
nazmulhasanshipon said:
Imagine the two terminal of a *parallel-plate capacitor* are connected to the two terminal of a battery with electric potential difference #V#. If the capacitance of the capacitor is #C#, and the area of each plate is $A$. In this process would the energy lost by the battery and the stored energy of the capacitor be the same or different? Please explain.

Someone pointed that the energy lost by the battery is #V=\frac{Qd}{\epsilon A}# (because the electric potential difference would be used to to raise the potential difference between the plates) and energy gained by the capacitor is #E=\frac{1}{2}QV#. And therefore they are different. But I doubt this since the energy should be conserved.
When the connection is made, energy is lost from the system due to the resistance of the wire.
The energy delivered by the battery is QV, but the energy gained by the capacitor, Ec, is less, being 1/2 CV^2.
C=Q/V so that Ec = 1/2 Q/V V^2 = 1/2 QV.
The loss resistance includes all forms of loss, including ohmic resistance, radiation and energy in a spark.
 
nazmulhasanshipon said:
Someone pointed that the energy lost by the battery is ##V=\frac{Qd}{\epsilon A}##
Q1. Can you explain why the above statement makes no sense?

Q2. If charge Q passes through a battery of emf V, how much energy has the battery converted (chemical to electrical) in terms of Q and V?

Q3. If a capacitor stores charge Q and has voltage V, how much energy does the capacitor store in terms of Q and V?

(You may assume ideal components: a battery with zero internal resistance, superconducting (zero resistance) wires and a lossless capacitor.)
 
You can make this quantitative. Take a circuit with a capacitor and resistor in series. Then in standard stationary approximation you have
$$Q/C+R i=U$$
or
$$Q/C+R \dot{Q}=U$$
The general solution is
$$Q(t)=c \exp[-t/(RC)]+C U.$$
The integration constant ##c## is determined by the intial condition ##Q(0)=0##, leading to
$$Q(t)=C U \{1-\exp[-t/(RC)]\}.$$
For ##t \rightarrow \infty## you have ##Q_{\infty}=C U## as it must be, and the energy of the electric field in the capacitor is
$$E_{\text{el}}=Q_{infty} U/2=\frac{C}{2} U^2.$$
There's also heat energy due to the Ohmic loss in the resistor. The power is
$$P(t)=R i^2(t)=R \dot{Q}^2(t).$$
Now
$$\dot{Q}=\frac{C U}{R C} \exp[-t/(R C)]=\frac{U}{R} \exp[-t/(RC)]$$
and thus
$$E_{\text{heat}}=\int_0^{\infty} \mathrm{d} t P(t) =\frac{U^2}{R} \int_{0}^{\infty} \exp[-2 t/(R C)]=\frac{C}{2} U^2=QU/2.$$
So you store only 1/2 of the energy lost by the battery in the electric field within the capacitor. The other half is used to produce heat in the resistor.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top