Comparing Rotational and Linear Motion - block vs. disk vs. ring

AI Thread Summary
The discussion focuses on comparing the motion of a block, disk, and ring rolling down a frictionless incline. The key point is that both the disk and ring possess rotational kinetic energy in addition to translational kinetic energy, while the block only has translational kinetic energy. The disk reaches the bottom first due to its lower moment of inertia compared to the ring, resulting in higher velocity despite both having the same total kinetic energy at the bottom. The conversation highlights the importance of understanding the relationship between rotational and linear motion in this context. Overall, the analysis clarifies how to derive the velocities of each object based on their kinetic energy expressions.
AstraeaSophia
Messages
6
Reaction score
0
Comparing Rotational and Linear Motion -- block vs. disk vs. ring

Homework Statement


A disk and a ring, both of mass M and radius R, are placed atop an incline and allowed to roll down. A block, also of mass M, is placed atop the same frictionless incline and allowed to slide down. How do the velocities of the disk, ring, and block compare at the bottom of the incline? Which one reaches the bottom first?

Homework Equations


KErotational = .5I\omega2
I = kMR2
\omega = v/r

The Attempt at a Solution


We were given certain steps to accomplish before getting to the last question, which is the one I've listed here and need help solving. So far, we've come up with expressions for the kinetic energy of the disk and the ring in terms of mass, radius and translational velocity. This is what I have:

KEdisk = .5I\omega2
= .5(.5MR2)\omega2
= (.25MR2)(v2/R2)
= .25mvdisk2

KEring = .5I\omega2
= .5(MR2)\omega2
= (.5MR2)(v2/R2)
= .5mvring2

KEblock = .5Mvblock2

This is where I get stuck. I know that the disk will reach the bottom of the incline before the ring by using Ui = -Kf and solving for the velocity value on the KE side of the equation. But I don't know how rotational relates to linear in this case. It seems too easy to say that the final velocities of the ring and the block will be the same just because their KE formulas are identical. I feel like I'm missing something. Then again, I could be overthinking it. Or maybe the expressions I derived for the KE of the disk and the ring are wrong.

Can anyone help?

P.S. -- don't know why the \omegas float up near the exponent like that, but they're not powers. Just regular ol' omegas. :-)
 
Last edited:
Physics news on Phys.org


This problem is artificial in the sense that, if the incline is frictionless, then no rolling and only slipping will occur for all objects. We will let that pass and pretend that the disk and the ring roll while the block slips without friction.

The important thing to realize is that when the rolling object reaches the bottom, it has two kind of kinetic energy:

1. Kinetic energy of the center of mass = 0.5*M*VCM2

2. Kinetic energy about the center of mass = 0.5*I*ω2

The two speeds are related by VCM=ωR because the objects roll instantaneously about their point of contact.

Therefore, the initial potential energy at the top is equal to the sum of these two terms at the bottom.
 


You're right about the problem being artificial. I guess the idea is just that friction doesn't affect the movement of any objects sliding or rolling down the hill. Problems out of introductory physics textbooks are streamlined for easy solving. :-)

I figured out the problem's finer details. I will say first what should have been painfully obvious -- the kinetic energies of both the disk and the ring at the bottom of the hill are the same. However, they will be traveling at different velocities when they reach the bottom. I wanted to post the result here for anyone else who might need a step in the right direction. Very quickly, though, and without much derivation so I don't give away anything huge.

The disk and the ring are both rolling down the hill, so they are subject to both Krotational and Klinear. If you have been given the formulas for both of these values, the kinetic energy of your disk and your ring will look like this:

Ktotal, ring = .5mv2 + .5I\omega2
--- knowing the equations for \omega and Iring allow you to substitute those expressions in and obtain the total kinetic value of the ring in terms of its mass and velocity

Ktotal, disk = the same as above, except that Iring has now become Idisk, and its formula consequently changes.

Kbox = the normal formula, .5mv2.

Once you insert the necessary substitutions and factor certain things out, you can find expressions for what the kinetic energy will be for every object at the bottom of the incline and compare these expressions. There is an obvious 1st, 2nd, and 3rd order as to which object will cross the finish line first once you solve for the velocities in each resultant equation.

Thanks for the help!

-- A.S.

P.S. -- Still don't know why my omegas are trying to fly away. :-p
 


Your omegas fly away because you are mixing regular type with LateX. You can
(a) Go to https://www.physicsforums.com/blog.php?b=347 and cut and paste characters from there in regular type, or
(b) Do the entire equation in LateX.
 
Last edited by a moderator:
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top