Compatibility equations in elastcity

  • Thread starter Thread starter arundtelang
  • Start date Start date
AI Thread Summary
The discussion centers on the compatibility equations in elasticity, which ensure a continuous displacement field in deformable solids. While there are initially 81 equations, they reduce to 6 essential equations due to symmetries, with only 3 being independent. The need for all six equations arises from the distinction between normal and shear strains, as the strain tensor must remain symmetric to prevent unrealistic deformations. The confusion about the 81 equations stems from a misunderstanding of the compliance tensor, which has 21 independent terms for anisotropic materials. Understanding these concepts is crucial for applying continuum mechanics effectively.
arundtelang
Messages
1
Reaction score
0
Strain field in deformable solid (continuum) has to follow compatibility equations so as to ensure single valued continuous displacement field.
There are in all 81 such equations and most of them are repeated, finally we are left with 6 equations.
It is quoted in textbooks that only 3 out of these 6 equations are independant.
If it is so why we need to use six equations to ensure possibility of strain field?
Only three equations should be enough.
Please help.
 
Engineering news on Phys.org
If I'm understanding your question correctly I think the difference lies in compression/tension vs. shear. There are three tension directions and three shear planes (for a total of 6 values), but only three of the six values are needed to find all other values.

Does this answer your question?
 
Just to clarify there are 3 normal and 6 shear values,

σxx, σyy, σzz,

τxy, τyx
τzy, τyz
τxz, τzx

and the corresponding strain ε values to go with them

but symmetries reduce these.
 
There are 9 terms in the strain tensor, but compatibility means the tensor must be siymmetric, so there are only 6 independent terms.

The off-diagonal terms are the shear strains, so there are 3 equal pairs of shear strains, ##\epsilon_{xy} = \epsilon_{yx}##, ##\epsilon_{yz} = \epsilon_{zy}##, and ##\epsilon_{zx} = \epsilon_{xz}##, plus the three direct strains.

The reason for that is just Euclidean geometry. If the strain tensor was not symmetric, a continuous region of space could deform into something containing holes or overlapping regions, whcih doesn't make sense for doing continuum mechanics.

I don't understand what you mean by "81 equations". There are 81 terms in the compliance (stress-strain) tensor, of which 21 are independent for a general anisotropic material (and only 2 are independent for isotropic materials) but that is a different concept from compatibiltiy, and "81 terms in a tensor" isn't te same as "81 equations".
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'd like to create a thread with links to 3-D Printer resources, including printers and software package suggestions. My motivations are selfish, as I have a 3-D printed project that I'm working on, and I'd like to buy a simple printer and use low cost software to make the first prototype. There are some previous threads about 3-D printing like this: https://www.physicsforums.com/threads/are-3d-printers-easy-to-use-yet.917489/ but none that address the overall topic (unless I've missed...
Back
Top