Complex Impedance of a voltage source and 2 resistors

AI Thread Summary
A real voltage source can be modeled as an ideal voltage source in series with its internal resistance and another resistor, both having complex impedance. The total impedance is calculated by summing the individual impedances, leading to a formula for the current based on the voltage and total impedance. The non-dc power dissipated in the second resistor is determined by the real part of its impedance, and the correct power formula is P=i²R_L, where R_L is the real part of the impedance. Maximum power dissipation occurs when the source impedance is the complex conjugate of the load impedance. Proper terminology is crucial, as "resistance" should not be used to describe complex impedance.
Potatochip911
Messages
317
Reaction score
3

Homework Statement


A real voltage source can be expressed as an ideal voltage source that is in series with a resistor that represents the inner resistance of the voltage source. This voltage source is a EMF and it is also in series with another resistor. Suppose both the EMF resistor ##R_\varepsilon## and the second resistor ##R_2## have complex impedance. Determine a) The current, b) the non-dc power that is dissipated in the second resistor and c) The requirements to achieve maximum dissipated power in the second resistor.https://physicsforums-bernhardtmediall.netdna-ssl.com/data/attachments/80/80085-d91a852075e6af6d2347539788417783.jpg

Homework Equations


##\tilde{v}=\tilde{i}z##
##z_ts=z_1+z_2+\cdots##
##z=|z|e^{j\phi}##

The Attempt at a Solution



For part a) the total impedance will be given by ##z_t=z_1+z_2=(R_\varepsilon +ja)+(R_2+jb)=(R_\varepsilon+R_2)+j(a+b)## so ##|z|=\sqrt{(R_\varepsilon+R_2)^2+(a+b)^2}## and ##\phi=tan^{-1}(\frac{a+b}{R_\varepsilon+R_2})## then from ##\tilde{i}=\frac{\tilde{v}}{z}##

$$\tilde{i}=\frac{ve^{-j\phi}}{\sqrt{(R_\varepsilon+R_2)^2+(a+b)^2}} \\
i=\frac{v\cos(\phi)}{\sqrt{(R_\varepsilon+R_2)^2+(a+b)^2}}
$$

now for b) would the non-dc power dissipated in the second resistor be ##P=i\Im{(R_2)}=ibj##?
 

Attachments

  • picture.png
    picture.png
    1.2 KB · Views: 562
Last edited by a moderator:
Physics news on Phys.org
Potatochip911 said:

Homework Statement


A real voltage source can be expressed as an ideal voltage source that is in series with a resistor that represents the inner resistance of the voltage source. This voltage source is a EMF and it is also in series with another resistor. Suppose both the EMF resistor ##R_\varepsilon## and the second resistor ##R_2## have complex impedance. Determine a) The current, b) the non-dc power that is dissipated in the second resistor and c) The requirements to achieve maximum dissipated power in the second resistor.https://physicsforums-bernhardtmediall.netdna-ssl.com/data/attachments/80/80085-d91a852075e6af6d2347539788417783.jpg

Homework Equations


##\tilde{v}=\tilde{i}z##
##z_ts=z_1+z_2+\cdots##
##z=|z|e^{j\phi}##

The Attempt at a Solution



For part a) the total impedance will be given by ##z_t=z_1+z_2=(R_\varepsilon +ja)+(R_2+jb)=(R_\varepsilon+R_2)+j(a+b)## so ##|z|=\sqrt{(R_\varepsilon+R_2)^2+(a+b)^2}## and ##\phi=tan^{-1}(\frac{a+b}{R_\varepsilon+R_2})## then from ##\tilde{i}=\frac{\tilde{v}}{z}##

$$\tilde{i}=\frac{ve^{-j\phi}}{\sqrt{(R_\varepsilon+R_2)^2+(a+b)^2}} \\
i=\frac{v\cos(\phi)}{\sqrt{(R_\varepsilon+R_2)^2+(a+b)^2}}
$$

now for b) would the non-dc power dissipated in the second resistor be ##P=i\Im{(R_2)}=ibj##?
Only the real part of the impedance dissipates power. Check your last formula. Even the dimension is incorrect.
 
Last edited by a moderator:
  • Like
Likes Potatochip911
ehild said:
Only the real part of the impedance dissipates power. Check your last formula. Even the dimension is incorrect.
Whoops I also wrote ##P=IR## instead of ##P_L=i^2R_L##, so it should be ##P=i^2R_L## then?
 
Potatochip911 said:
Whoops I also wrote ##P=IR## instead of ##P_L=i^2R_L##, so it should be ##P=i^2R_L## then?
Yes, if you mean that RL is the real part of z2. And you do not need the cosine term in the expression of the current as the voltage through RL is in phase with the current. You need to use the rms value of the voltage.
 
  • Like
Likes Potatochip911
ehild said:
Yes, if you mean that RL is the real part of z2. And you do not need the cosine term in the expression of the current as the voltage through RL is in phase with the current.
Yep & then I believe the power dissipated will be at a maximum when the two resistances are complex conjugates of the other since then the part of the denominator related to the imaginary numbers will go to 0.
 
Potatochip911 said:
Yep & then I believe the power dissipated will be at a maximum when the two resistances are complex conjugates of the other since then the part of the denominator related to the imaginary numbers will go to 0.
Yes, it is right.
Do not use the word resistance for a complex impedance. The impedance of the source must be complex conjugate of the loading impedance.
 
  • Like
Likes Potatochip911
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top