Compton Effect, angle of deflection

AI Thread Summary
The discussion focuses on calculating the angle of deflection for X-rays using the Compton Effect. The initial frequency of the incident X-ray is 4.50 x 10^19 Hz, and the deflected frequency is 4.32 x 10^19 Hz. The wavelengths before and after deflection are calculated, leading to a change in wavelength of 1.26262626 x 10^-13 m. The angle of deflection is derived using the formula Δλ = (h/mc)(1-cosθ), resulting in an angle of approximately 18.6 degrees. A participant suggests a potential calculation error in the wavelength determination, indicating a discrepancy in the initial wavelength calculation.
Kennedy111
Messages
27
Reaction score
0

Homework Statement


The scientist changes the frequency of the incident X-ray to 4.50 x 10^19 Hz and measures the deflected X ray frequency of 4.32 x 10^19 Hz. What was the angle of deflection?

Fi = 4.50 x 10^19 Hz
Ff = 4.32 x 10^19 Hz

Homework Equations


Δλ = λf - λi
Δλ = (h/mc)(1-cosθ)
λ = c/f

The Attempt at a Solution



First, I found the wavelength of the X ray before and after it is deflected.

λi = c/f
= (3.00 x 10^8 m/s) / (4.50 x 10^19 Hz)
= 6.818181812 x 10^-12 m

λf = c/f
= (3.00 x 10^8 m/s) / (4.32 x 10^19 Hz)
= 6.9444444444 x 10^-12 m

Then found the change in wavelength

Δλ = λf - λi
= (6.944444444 x 10^-12 m) - (6.818181812 x 10^-12 m)
= 1.26262626 x 10^-13 m

Then I used the change in wavelength to find the angle

Δλ = (h/mc)(1-cosθ)
1.26262626 x 10^-13 m = ((6.63 x 10^-34 Js) / (9.11 x 10^-31 kg)(3.00 x 10^8 m/s))(1-cosθ)
1.26262626 x 10^-13 m = (2.4259056 x 10^-12)(1-cosθ)
0.052047623 = 1-cosθ
cosθ = 0.947952377
cos^-1(0.947952377) = 18.56692499° = 18.6°

I'm just really unsure of the process that I took...
 
Physics news on Phys.org
Kennedy111 said:

Homework Statement


The scientist changes the frequency of the incident X-ray to 4.50 x 10^19 Hz and measures the deflected X ray frequency of 4.32 x 10^19 Hz. What was the angle of deflection?

Fi = 4.50 x 10^19 Hz
Ff = 4.32 x 10^19 Hz

Homework Equations


Δλ = λf - λi
Δλ = (h/mc)(1-cosθ)
λ = c/f

The Attempt at a Solution



First, I found the wavelength of the X ray before and after it is deflected.

λi = c/f
= (3.00 x 10^8 m/s) / (4.50 x 10^19 Hz)
= 6.818181812 x 10^-12 m

λf = c/f
= (3.00 x 10^8 m/s) / (4.32 x 10^19 Hz)
= 6.9444444444 x 10^-12 m

Then found the change in wavelength

Δλ = λf - λi
= (6.944444444 x 10^-12 m) - (6.818181812 x 10^-12 m)
= 1.26262626 x 10^-13 m

Then I used the change in wavelength to find the angle

Δλ = (h/mc)(1-cosθ)
1.26262626 x 10^-13 m = ((6.63 x 10^-34 Js) / (9.11 x 10^-31 kg)(3.00 x 10^8 m/s))(1-cosθ)
1.26262626 x 10^-13 m = (2.4259056 x 10^-12)(1-cosθ)
0.052047623 = 1-cosθ
cosθ = 0.947952377
cos^-1(0.947952377) = 18.56692499° = 18.6°

I'm just really unsure of the process that I took...
Hey I'm not positive but i did all the same calculations as you and yet i got a different answer. I believe this is because you made a calculation error when you multiplied (3.00 x 10^8 m/s) / (4.50 x 10^19 Hz). You see when you did this you got 6.818181812 x 10^-12 m but i got 6.666666666*10^-12m. correct me if I'm wrong but i believe this is the only mistake.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...

Similar threads

Replies
1
Views
3K
Replies
9
Views
151
Replies
5
Views
5K
Replies
3
Views
4K
Replies
3
Views
4K
Replies
1
Views
2K
Replies
1
Views
2K
Back
Top