Compute the terminal speed of a car as it coasts down the incline

AI Thread Summary
To compute the terminal speed of a Toyota Prius coasting down a 9% incline, the discussion emphasizes balancing the downslope gravitational force with the air resistance force at terminal velocity. The relevant equations include the drag force formula and the gravitational force component along the slope, which can be derived using the angle from the grade. Participants suggest using the angle to find the sine component for accurate calculations and highlight the importance of considering the car's mass and drag coefficient. The final computed terminal velocity should reflect these forces in equilibrium. Understanding these principles is crucial for solving the problem accurately.
vannessa001
Messages
3
Reaction score
0

Homework Statement


A Toyota Prius has a total mass of 1520 kg when carrying passengers. The driver shifts
the car into neutral and coasts down a long, straight section of road with a grade of 9%
(the term "grade" means slope). The car eventually reaches a terminal speed. Ignoring the
effects of "rolling friction" and assuming that the driver does not have her foot on the brake
pedal, compute the terminal speed of the Prius as it coasts down the incline. Assume the
temperature of the air is 30 degrees C.
The drag coefficient of a 2011 Toyota Prius moving forward is 0.25
The frontal cross-sectional area of a 2011 Toyota Prius is 2.1 m^2
note that, when the object is moving at a constant velocity, a = 0, then solve for v.

Homework Equations



F=ma
V(terminal)=sqrt(2mg/Cd*density*A)
g=GM/R^2

The Attempt at a Solution


A=2.1m^2
m=1520kg
a=0
Cd=0.25
terminal velocity=?

so far I have A=pir^2
r=sqrt(A/pi)
sqrt((2.1m^2)/pi)=0.6685
V=4pir^3
4pi(0.6685)^3=3.75
g=GM/R^2
(6.67*10^-11)(1520kg)/(0.6685^2)=2.27*10^-7
D=m/v
1520kg/3.75m^3=404.97kg/m^3
Vterm=sqrt((2*1520*(2.27*10^-7))/(0.25*404.97kg/m^3*2.1m^2))=0.0018
I found the terminal velocity but I don't think it is right because I did not know how to use the grade of 9% on the straight section road and the temperature given. My teacher also said to use f=ma but I don't know how to incorporate it into this problem.

thank you for your help
 
Physics news on Phys.org
"Percent" means "per hundred" (from the French). A 9% grade implies that the height changes by 9 units of distance when the horizontal distance changes by 100 units. The angle involved will be tan(\theta) = 9/100.
 
gneill said:
"Percent" means "per hundred" (from the French). A 9% grade implies that the height changes by 9 units of distance when the horizontal distance changes by 100 units. The angle involved will be tan(\theta) = 9/100.
So I use tan theta=9/100 to find sin theta. And use the equation V=sqrt(2*mg*sintheta/density*area*drag coefficient)
my answer was 0.0896 when iI plug in all my values but it doesn't seem right
 
Why don't you look at is as a force balance situation? When the car reaches terminal speed acceleration is zero, so it must be because the downslope force due to gravity is balanced by the air resistance force.

The air resistance force, from the formula that you gave, is
F_d = \frac{1}{2} C_d \rho v^2 A
Find the downslope force due to gravity and equate it with this force. Solve for velocity.
 
gneill said:
Why don't you look at is as a force balance situation? When the car reaches terminal speed acceleration is zero, so it must be because the downslope force due to gravity is balanced by the air resistance force.

The air resistance force, from the formula that you gave, is
F_d = \frac{1}{2} C_d \rho v^2 A
Find the downslope force due to gravity and equate it with this force. Solve for velocity.
how would you find the down slope force?
 
vannessa001 said:
how would you find the down slope force?

Have you done problems with a block sitting on a ramp of a given angle and had to work out the component of the block's weight that is directed down the slope, and the component that is normal to the slope?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top