Concept question-exponential function derivatives (calc II)

frasifrasi
Messages
276
Reaction score
0
Concept question--exponential function derivatives (calc II)

Ok, so there is an example on my textbook that asks for the derivative of y = x^2.

--after applying ln on both sides, if finally gets to the lny = xlnx step.

But after this step, it just states y'/y = x(1/x)+ lnx(1). I understand it is just the prod. rule on the right, but can anyone explain why it went from lny to y'/y ? Is this a property or formula that they used?

Thank you.
 
Physics news on Phys.org
they used implicit differentiation on the lhs.

You might remember using it on things like xy=1 or equations like that in Calc I.

so (ln y)' = 1/y * dy/dx which gives the y'/y
 
Chain rule?
 
Oh, I see. Thank you.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top