Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Condensed matter physics, area laws & LQG?

  1. Nov 14, 2016 #361

    atyy

    User Avatar
    Science Advisor

    https://arxiv.org/abs/1611.00360
    de Sitter as a Resonance
    Jonathan Maltz, Leonard Susskind
    (Submitted on 1 Nov 2016)
    A quantum mechanical formulation of de Sitter cosmological spacetimes still eludes string theory. In this paper we conjecture a potentially rigorous framework in which the status of de Sitter space is the same as that of a resonance in a scattering process. We conjecture that transition amplitudes between certain states with asymptotically supersymmetric flat vacua contain resonant poles characteristic meta-stable intermediate states. A calculation employing constrained instantons illustrates this idea.

    https://arxiv.org/abs/1611.03491
    de Sitter Harmonies: Cosmological Spacetimes as Resonances
    Jonathan Maltz
    (Submitted on 10 Nov 2016)
    The aim of this work is to provided the details of a calculation summarized in the recent paper by Maltz and Susskind which conjectured a potentially rigorous framework where the status of de Sitter space is the same as that of a resonance in a scattering process. The conjecture being that transition amplitudes between certain states with asymptotically supersymmetric flat vacua contain resonant poles characteristic meta-stable intermediate states. A calculation employing constrained instantons is presented that illustrates this idea.
     
  2. Nov 28, 2016 #362

    atyy

    User Avatar
    Science Advisor

    https://arxiv.org/abs/1611.08581
    Towards a dS/MERA correspondence
    Raj Sinai Kunkolienkar, Kinjal Banerjee
    (Submitted on 25 Nov 2016)
    Recent advances have suggested that spacetime itself emerges from the entanglement of the quantum degrees of freedom living on the boundary. In the case of the AdS spacetimes, a particular class of tensor networks has been shown to realize the same via Multi-Scale Entanglement Renormalization Ansatz (MERA). In this paper we suggest a prescription for the dS/MERA correspondence and recover a discrete version of de Sitter Penrose diagram by using the MERA on conformal theories identified with the future/past conformal boundaries of the de Sitter spacetime. As anticipated, time appears as the emergent direction. We comment on the possible interpretation that the de Sitter cosmological horizon entropy involves entanglement with degrees of freedom across the cosmological horizon as well as the implications of our construction for cosmology.

    https://arxiv.org/abs/1611.08613
    Tensor Network Models of Unitary Black Hole Evaporation
    Samuel Leutheusser, Mark Van Raamsdonk
    (Submitted on 25 Nov 2016)
    We introduce a general class of toy models to study the quantum information-theoretic properties of black hole radiation. The models are governed by a set of isometries that specify how microstates of the black hole at a given energy evolve to entangled states of a tensor product black-hole/radiation Hilbert space. The final state of the black hole radiation is conveniently summarized by a tensor network built from these isometries. We introduce a set of quantities generalizing the Renyi entropies that provide a complete set of bipartite/multipartite entanglement measures, and give a general formula for the average of these over initial black hole states in terms of the isometries defining the model. For models where the dimension of the final tensor product radiation Hilbert space is the same as that of the space of initial black hole microstates, the entanglement structure is universal, independent of the choice of isometries. In the more general case, we find that models which best capture the "information-free" property of black hole horizons are those whose isometries are tensors corresponding to states of tripartite systems with maximally mixed subsystems.
     
  3. Dec 2, 2016 #363

    atyy

    User Avatar
    Science Advisor

    https://arxiv.org/abs/1612.00433
    Comments on Holographic Complexity
    Dean Carmi, Robert C. Myers, Pratik Rath
    (Submitted on 1 Dec 2016)
    We study two recent conjectures for holographic complexity: the complexity=action conjecture and the complexity=volume conjecture. In particular, we examine the structure of the UV divergences appearing in these quantities, and show that the coefficients can be written as local integrals of geometric quantities in the boundary. We also consider extending these conjectures to evaluate the complexity of the mixed state produced by reducing the pure global state to a specific subregion of the boundary time slice. The UV divergences in this subregion complexity have a similar geometric structure, but there are also new divergences associated with the geometry of the surface enclosing the boundary region of interest. We discuss possible implications arising from the geometric nature of these UV divergences.
     
  4. Dec 9, 2016 #364

    atyy

    User Avatar
    Science Advisor

    https://arxiv.org/abs/1612.02427
    cMERA for Interacting Fields
    Jordan S. Cotler, Javier Molina-Vilaplana, Mark T. Mueller
    (Submitted on 7 Dec 2016)
    We upgrade cMERA to a systematic variational ansatz and develop techniques for its application to interacting quantum field theories in arbitrary spacetime dimensions. By establishing a correspondence between the first two terms in the variational expansion and the Gaussian Effective Potential, we can exactly solve for a variational approximation to the cMERA entangler. As examples, we treat scalar ##φ^{4}## theory and the Gross-Neveu model and extract non-perturbative behavior. We also comment on the connection between generalized squeezed coherent states and more generic entanglers.
     
  5. Dec 19, 2016 #365

    atyy

    User Avatar
    Science Advisor

    https://arxiv.org/abs/1612.05698
    A defect in holographic interpretations of tensor networks
    Bartlomiej Czech, Phuc H. Nguyen, Sivaramakrishnan Swaminathan
    (Submitted on 17 Dec 2016)
    We initiate the study of how tensor networks reproduce properties of static holographic space-times, which are not locally pure anti-de Sitter. We consider geometries that are holographically dual to ground states of defect, interface and boundary CFTs and compare them to the structure of the requisite MERA networks predicted by the theory of minimal updates. When the CFT is deformed, certain tensors require updating. On the other hand, even identical tensors can contribute differently to estimates of entanglement entropies. We interpret these facts holographically by associating tensor updates to turning on non-normalizable modes in the bulk. In passing, we also clarify and complement existing arguments in support of the theory of minimal updates, propose a novel ansatz called rayed MERA that applies to a class of generalized interface CFTs, and analyze the kinematic spaces of the thin wall and AdS3-Janus geometries.
     
  6. Jan 1, 2017 #366

    atyy

    User Avatar
    Science Advisor

    https://arxiv.org/abs/1612.09513
    Holographic Bell Inequality
    Jiunn-Wei Chen, Sichun Sun, Yun-Long Zhang
    (Submitted on 30 Dec 2016)
    We study the Bell inequality in a holographic model of a casually disconnected Einstein-Podolsky-Rosen (EPR) pair. The CHSH form of Bell inequality are computed using holographic Schwinger-Keldysh(SK) correlators. We show that the manifestation of quantum entanglement in Bell inequality can be reproduced from the classical gravitation theory in the bulk, which lends support to the ER=EPR conjecture.
     
  7. Jan 4, 2017 #367

    atyy

    User Avatar
    Science Advisor

    https://arxiv.org/abs/1701.01107
    The Second Law of Quantum Complexity
    Adam R. Brown, Leonard Susskind
    (Submitted on 4 Jan 2017)
    We give arguments for the existence of a thermodynamics of quantum complexity that includes a "Second Law of Complexity". To guide us, we derive a correspondence between the computational (circuit) complexity of a quantum system of K qubits, and the positional entropy of a related classical system with 2K degrees of freedom. We also argue that the kinetic entropy of the classical system is equivalent to the Kolmogorov complexity of the quantum Hamiltonian. We observe that the expected pattern of growth of the complexity of the quantum system parallels the growth of entropy of the classical system. We argue that the property of having less-than-maximal complexity (uncomplexity) is a resource that can be expended to perform directed quantum computation.
    Although this paper is not primarily about black holes, we find a surprising interpretation of the uncomplexity-resource as the accessible volume of spacetime behind a black hole horizon.
     
  8. Jan 7, 2017 #368

    atyy

    User Avatar
    Science Advisor

    https://arxiv.org/abs/1701.01383
    Group Field theory and Tensor Networks: towards a Ryu-Takayanagi formula in full quantum gravity
    Goffredo Chirco, Daniele Oriti, Mingyi Zhang
    (Submitted on 5 Jan 2017)
    We establish a dictionary between group field theory (thus, spin networks and random tensors) states and generalized random tensor networks. Then, we use this dictionary to compute the R\'{e}nyi entropy of such states and recover the Ryu-Takayanagi formula, in three different cases corresponding to three different truncations/approximations, suggested by the established correspondence.
     
  9. Jan 11, 2017 #369

    atyy

    User Avatar
    Science Advisor

    https://arxiv.org/abs/1701.02319
    Connecting Fisher information to bulk entanglement in holography
    Souvik Banerjee, Johanna Erdmenger, Debajyoti Sarkar
    (Submitted on 9 Jan 2017)
    In the context of relating AdS/CFT to quantum information theory, we propose a holographic dual of Fisher information metric for mixed states in the boundary field theory. This amounts to a holographic measure for the distance between two mixed quantum states. For a spherical subregion in the boundary we show that this is related to a particularly regularized volume enclosed by the Ryu-Takayanagi surface. We further argue that the quantum correction to the proposed Fisher information metric is related to the quantum correction to the boundary entanglement entropy. We discuss consequences of this connection.
     
  10. Mar 13, 2017 #370

    atyy

    User Avatar
    Science Advisor

    https://arxiv.org/abs/1703.03483
    Which quantum states are dual to classical spacetimes?
    Marcelo Botta-Cantcheff, Pedro J. Martínez
    (Submitted on 9 Mar 2017)
    It is commonly accepted that states in a conformal field theory correspond to classical spacetimes with Anti-de-Sitter asymptotics. In this essay, we argue that such states should be coherent in the large-N limit, and show implications in the spacetime emergence mechanism. In particular, we argue that the microstates that compose a black hole (entangled) state in the Van Raamsdonk description cannot be interpreted as classical geometric configurations. Therefore, the conclusion is that care should be taken to interpret (micro)states in the gravity side, and that quantum coherence plays an important role in the description of the holographic emergence phenomenon.

    https://arxiv.org/abs/1703.01519
    Bulk reconstruction and the Hartle-Hawking wavefunction
    Daniel Louis Jafferis
    (Submitted on 4 Mar 2017)
    In this work, a relation is found between state dependence of bulk observables in the gauge/gravity correspondence and nonperturbative diffeomorphism invariance. Certain bulk constraints, such as the black hole information paradox, appear to obstruct the existence of a linear map from bulk operators to exact CFT operators that is valid over the entire expected range of validity of the bulk effective theory. By formulating the bulk gravitational physics in the Hartle-Hawking framework to address these nonperturbative IR questions, I will demonstrate, in the context of eternal AdS-Schwarzschild, that the problematic operators fail to satisfy the Hamiltonian constraints nonperturbatively. In this way, the map between bulk effective theory Hartle-Hawking wavefunctions and exact CFT states can be linear on the full Hilbert space.
     
  11. Apr 20, 2017 #371

    atyy

    User Avatar
    Science Advisor

    https://arxiv.org/abs/1704.05464
    Bulk locality from modular flow
    Thomas Faulkner, Aitor Lewkowycz
    (Submitted on 18 Apr 2017)
    We study the reconstruction of bulk operators in the entanglement wedge in terms of low energy operators localized in the respective boundary region. To leading order in N, the dual boundary operators are constructed from the modular flow of single trace operators in the boundary subregion. The appearance of modular evolved boundary operators can be understood due to the equality between bulk and boundary modular flows and explicit formulas for bulk operators can be found with a complete understanding of the action of bulk modular flow, a difficult but in principle solvable task. We also obtain an expression when the bulk operator is located on the Ryu-Takayanagi surface which only depends on the bulk to boundary correlator and does not require the explicit use of bulk modular flow. This expression generalizes the geodesic operator/OPE block dictionary to general states and boundary regions.

    https://arxiv.org/abs/1704.05839
    High Energy Physics - Theory
    Entanglement Wedge Reconstruction via Universal Recovery Channels

    Jordan Cotler, Patrick Hayden, Grant Salton, Brian Swingle, Michael Walter
    (Submitted on 19 Apr 2017)
    We apply and extend the theory of universal recovery channels from quantum information theory to address the problem of entanglement wedge reconstruction in AdS/CFT. It has recently been proposed that any low-energy local bulk operators in a CFT boundary region's entanglement wedge can be reconstructed on that boundary region itself. Existing work arguing for this proposal relies on algebraic consequences of the exact equivalence between bulk and boundary relative entropies, namely the theory of operator algebra quantum error correction. However, bulk and boundary relative entropies are only approximately equal in bulk effective field theory, and in similar situations it is known that the algebraic consequences of exact equality can be qualitatively incorrect. The framework of universal recovery channels provides a robust demonstration of the entanglement wedge reconstruction conjecture in addition to new physical insights. Most notably, we find that a bulk operator acting in a given boundary region's entanglement wedge can be expressed as the response of the boundary region's modular Hamiltonian to a perturbation of the bulk state in the direction of the bulk operator. This formula can be interpreted as a noncommutative version of Bayes' rule that attempts to undo the noise induced by restricting to only a portion of the boundary, and has an integral representation in terms of modular flows. We illustrate the application of our formula in the 2+1 dimensional AdS-Rindler case, finding that it expresses local bulk operators in the AdS-Rindler wedge in terms of field operators corresponding to Rindler modes in its boundary domain of dependence. To reach these conclusions, we extend the theory of universal recovery channels to finite dimensional operator algebras and demonstrate that recovery channels approximately preserve the multiplicative structure of the operator algebra.
     
  12. May 2, 2017 #372
    I would like to understand what is (possibly) wrong with the following approach to chiral fermions: First of all, the problem is not the fermions, anyway we have only massive Dirac fermions in the SM, and to put them on the lattice givens only a doubling problem. So, the only problem is a chiral gauge action. For vector gauge fields, we have Wilson lattice gauge field, which have exact gauge symmetry even on the lattice. But there is nothing with such exact gauge symmetry for chiral gauge action.

    But why not simply using some inexact gauge symmetry? The result would be what? A mass of the gauge fields. But so what, given that weak gauge fields are massive in nature too, and the only part of electroweak gauge group which has zero mass is yet another vector gauge action.

    I have been told massive gauge fields are non-renormalizable. But so what if the SM is anyway only an effective field theory? It means, in the large distance limit it gives results equivalent to some renormalizable theory, like that with exact gauge symmetry and a Higgs or so. So, what would be wrong with a lattice gauge theory which does not have exact gauge symmetry?
     
  13. May 8, 2017 #373

    atyy

    User Avatar
    Science Advisor

    https://arxiv.org/abs/1705.01964
    Discrete Gravity on Random Tensor Network and Holographic Rényi Entropy
    Muxin Han, Shilin Huang
    (Submitted on 4 May 2017)
    In this paper we apply the discrete gravity and Regge calculus to tensor networks and Anti-de Sitter/conformal field theory (AdS/CFT) correspondence. We construct the boundary many-body quantum state |Ψ⟩ using random tensor networks as the holographic mapping, applied to the Wheeler-deWitt wave function of bulk Euclidean discrete gravity in 3 dimensions. The entanglement R\'enyi entropy of |Ψ⟩ is shown to holographically relate to the on-shell action of Einstein gravity on a branch cover bulk manifold. The resulting R\'enyi entropy Sn of |Ψ⟩ approximates with high precision the R\'enyi entropy of ground state in 2-dimensional conformal field theory (CFT). In particular it reproduces the correct n dependence. Our results develop the framework of realizing the AdS3/CFT2 correspondence on random tensor networks, and provide a new proposal to approximate CFT ground state.
     
  14. May 9, 2017 #374

    atyy

    User Avatar
    Science Advisor

    https://arxiv.org/abs/1705.03048
    De Finetti theorems and entanglement in large-N theories and gravity
    Javier M. Magan
    (Submitted on 8 May 2017)
    The de Finetti theorem and its extensions concern the structure of multipartite probability distributions with certain symmetry properties, the paradigmatic original example being permutation symmetry. These theorems assert that such symmetric distributions are well approximated by convex combinations of uncorrelated ones. In this article, we apply de Finetti theorems to quantum gravity theories, such as the Sachdev-Ye-Kitaev (SYK) model or large-N vector and gauge theories. For SYK we put recent studies of information/entanglement dynamics in a general and rigorous basis. For vector and gauge theories, we find a gauge invariant operator whose expectation value provides the leading term in the entanglement entropy in all states close enough to a given classical state. These results can be unified through a generic statement about the nature of Schmidt decompositions and decoherence in large-N theories. In the reverse direction, we extend de Finetti theorems in various ways and provide an independent approach to the theorems only based on the large-N properties of the gauge invariant coherence group.

    https://arxiv.org/abs/1705.03026
    Nonlinear Gravity from Entanglement in Conformal Field Theories
    Thomas Faulkner, Felix M. Haehl, Eliot Hijano, Onkar Parrikar, Charles Rabideau, Mark Van Raamsdonk
    (Submitted on 8 May 2017)
    In this paper, we demonstrate the emergence of nonlinear gravitational equations directly from the physics of a broad class of conformal field theories. We consider CFT excited states defined by adding sources for scalar primary or stress tensor operators to the Euclidean path integral defining the vacuum state. For these states, we show that up to second order in the sources, the entanglement entropy for all ball-shaped regions can always be represented geometrically (via the Ryu-Takayanagi formula) by an asymptotically AdS geometry. We show that such a geometry necessarily satisfies Einstein's equations perturbatively up to second order, with a stress energy tensor arising from matter fields associated with the sourced primary operators. We make no assumptions about AdS/CFT duality, so our work serves as both a consistency check for the AdS/CFT correspondence and a direct demonstration that spacetime and gravitational physics can emerge from the description of entanglement in conformal field theories.
     
  15. May 12, 2017 #375

    atyy

    User Avatar
    Science Advisor

  16. May 18, 2017 #376

    atyy

    User Avatar
    Science Advisor

    https://arxiv.org/abs/1705.06283
    Classical Spacetimes as Amplified Information in Holographic Quantum Theories
    Yasunori Nomura, Pratik Rath, Nico Salzetta
    (Submitted on 17 May 2017)
    We argue that classical spacetimes represent amplified information in the holographic theory of quantum gravity. In general, classicalization of a quantum system involves amplification of information at the cost of exponentially reducing the number of observables. In quantum gravity, the geometry of spacetime must be the analogously amplified information. Bulk local semiclassical operators probe this information without disturbing it; these correspond to logical operators acting on code subspaces of the holographic theory. From this viewpoint, we study how bulk local operators may be realized in a holographic theory of general spacetimes, which includes AdS/CFT as a special case, and deduce its consequences. In the first half of the paper, we ask what description of the bulk physics is provided by a holographic state dual to a semiclassical spacetime. In particular, we analyze what portion of the bulk can be reconstructed in the holographic theory. The analysis indicates that when a spacetime contains a quasi-static black hole inside a holographic screen, the theory provides a description of physics as viewed from the exterior (though the interior information is not absent). In the second half, we study how and when a semiclassical description emerges in the holographic theory. We find that states representing semiclassical spacetimes are non-generic in the holographic Hilbert space; in particular, microstates for a semiclassical spacetime do not form a Hilbert space. When there are a significant number of independent microstates, semiclassical operators must be given state-dependently. We elucidate this point using the stabilizer formalism and tensor network models. We also argue that semiclassical states, albeit exponentially rare in the Hilbert space, can be dynamically selected under time evolution. Finally, we discuss implications of the present picture for the black hole interior.


    https://arxiv.org/abs/1705.06711
    Local Lorentz covariance in finite-dimensional Local Quantum Physics
    Matti Raasakka
    (Submitted on 18 May 2017)
    We show that local Lorentz covariance arises canonically as the group of transformations between local thermal states in the framework of Local Quantum Physics, given the following three postulates: (i) Local observable algebras are finite-dimensional. (ii) Minimal local observable algebras are isomorphic to M2(C), the observable algebra of a single qubit. (iii) The vacuum restricted to any minimal local observable algebra is thermal. The derivation reveals a new and surprising relation between spacetime structure and local quantum states. In particular, we show how local restrictions of the vacuum can determine the connection between different local inertial reference frames.
     
    Last edited: May 19, 2017
  17. Jun 24, 2017 #377

    atyy

    User Avatar
    Science Advisor

    https://arxiv.org/abs/1706.07056
    Liouville Action as Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFT
    Pawel Caputa, Nilay Kundu, Masamichi Miyaji, Tadashi Takayanagi, Kento Watanabe
    (Submitted on 21 Jun 2017)
    We propose an optimization procedure for Euclidean path-integrals that evaluate CFT wave functionals in arbitrary dimensions. The optimization is performed by minimizing certain functional, which can be interpreted as a measure of computational complexity, with respect to background metrics for the path-integrals. In two dimensional CFTs, this functional is given by the Liouville action. We also formulate the optimization for higher dimensional CFTs and, in various examples, find that the optimized hyperbolic metrics coincide with the time slices of expected gravity duals. Moreover, if we optimize a reduced density matrix, the geometry becomes two copies of the entanglement wedge and reproduces the holographic entanglement entropy. Our approach resembles a continuous tensor network renormalization and provides a concrete realization of the proposed interpretation of AdS/CFT as tensor networks. The present paper is an extended version of our earlier report arXiv:1703.00456 and includes many new results such as evaluations of complexity functionals, energy stress tensor, higher dimensional extensions and time evolutions of thermofield double states.

    https://arxiv.org/abs/1706.07143
    Black Hole Information Revisited
    Andrew Strominger
    (Submitted on 22 Jun 2017)
    We argue that four-dimensional black hole evaporation inevitably produces an infinite number of soft particles in addition to the thermally distributed `hard' Hawking quanta, and moreover that the soft and hard particles are highly correlated. This raises the possibility that quantum purity is restored by correlations between the hard and soft radiation, while inclusive measurements which omit the soft radiation observe the thermal Hawking spectrum. In theories whose only stable particle is the graviton, conservation laws are used to argue that such correlations are in principle sufficient for the soft gravitons to purify the hard thermal ones.

    https://arxiv.org/abs/1706.07424
    Loss of locality in gravitational correlators with a large number of insertions
    Sudip Ghosh, Suvrat Raju
    (Submitted on 22 Jun 2017)
    We review lessons from the AdS/CFT correspondence that indicate that the emergence of locality in quantum gravity is contingent on considering observables with a small number of insertions. Correlation functions where the number of insertions scales with a power of the central charge of the CFT are sensitive to nonlocal effects in the bulk theory, which arise from a combination of the effects of the bulk Gauss law and a breakdown of perturbation theory. To examine whether a similar effect occurs in flat space, we consider the scattering of massless particles in the bosonic string and the superstring in the limit where the number of external particles, n, becomes very large. We use estimates of the volume of the Weil-Petersson moduli space of punctured Riemann surfaces to argue that string amplitudes grow factorially in this limit. We verify this factorial behaviour through an extensive numerical analysis of string amplitudes at large n. Our numerical calculations rely on the observation that, in the large n limit, the string scattering amplitude localizes on the Gross-Mende saddle points, even though individual particle energies are small. This factorial growth implies the breakdown of string perturbation theory for n∼(Mpl/E)d−2 in d dimensions where E is the typical individual particle energy. We explore the implications of this breakdown for the black hole information paradox. We show that the loss of locality suggested by this breakdown is precisely sufficient to resolve the cloning and strong subadditivity paradoxes.
     
  18. Jul 1, 2017 #378

    atyy

    User Avatar
    Science Advisor

    https://arxiv.org/abs/1706.09617
    Entanglement entropy, the Einstein equation and the Sparling construction
    Mahdi Godazgar
    (Submitted on 29 Jun 2017)
    We relate the recent derivation of the linearised Einstein equation on an AdS background from holographic entanglement entropy arguments to the Sparling construction: we derive the differential form whose exterior derivative gives the Einstein equation from the Sparling formalism. We develop the study of perturbations within the context of the Sparling formalism and find that the Sparling form vanishes for linearised perturbations on flat space.
     
  19. Nov 20, 2017 #379

    atyy

    User Avatar
    Science Advisor

    https://arxiv.org/abs/1711.05967
    A Renormalizable SYK-type Tensor Field Theory
    Joseph Ben Geloun, Vincent Rivasseau
    (Submitted on 16 Nov 2017)
    In this paper we introduce a simple field theoretic version of the Carrozza-Tanasa-Klebanov-Tarnopolsky (CTKT) "uncolored" holographic tensor model. It gives a more familiar interpretation to the previously abstract modes of the SYK or CTKT models in terms of momenta. We choose for the tensor propagator the usual Fermionic propagator of condensed matter, with a spherical Fermi surface, but keep the CTKT interactions. Hence our field theory can also be considered as an ordinary condensed matter model with a non-local and non-rotational invariant interaction. Using a multiscale analysis we prove that this field theory is just renormalizable to all orders of perturbation theory in the ultraviolet regime.
     
  20. Dec 3, 2017 #380

    atyy

    User Avatar
    Science Advisor

    https://arxiv.org/abs/1711.08482
    AdS2 holography and the SYK model
    Gábor Sárosi
    (Submitted on 22 Nov 2017)
    These are lecture notes based on a series of lectures presented at the XIII Modave Summer School in Mathematical physics aimed at PhD students and young postdocs. The goal is to give an introduction to some of the recent developments in understanding holography in two bulk dimensions, and its connection to microscopics of near extremal black holes. The first part reviews the motivation to study, and the problems (and their interpretations) with holography for AdS2 spaces. The second part is about the Jackiw-Teitelboim theory and nearly-AdS2 spaces. The third part introduces the Sachdev-Ye-Kitaev model, reviews some of the basic calculations and discusses what features make the model exciting.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted