Conservation of Energy Ice Cube Problem

AI Thread Summary
The discussion focuses on a physics problem involving the conservation of energy for an ice cube sliding inside a horizontal pipe. The ice cube's speed at the bottom is given as 3 m/s, and the speed at the top is calculated to be 2.25 m/s using energy conservation principles. For part b, the height of the ice cube at any angle theta is expressed as r(1-cos(theta)), allowing for the derivation of a general formula for speed at different positions in the pipe. The final expression for speed at any position is v1 = sqrt[(vo)^2 + 2rg(cos(theta) - 1)], where vo is the speed at the bottom and r is the radius of the pipe. The conversation emphasizes understanding the relationship between height and angle in the context of energy conservation.
bcjochim07
Messages
366
Reaction score
0

Homework Statement


A very slippery ice cube slides in a vertical plane around the inside of a smooth, 20 cm diameter horizontal pipe. The ice cube's speed at the bottom of the circle is 3 m/s.

a) What is the ice cube's speed at the top?

b) Find an algebraic expression for the ice cube's speed when it is at angle theta where the angle is measured counterclockwise from the bottom of the circle. Your expression should give 3 m/s for 0 degrees and your answer to part a for 180 degrees.


Homework Equations


KE= 1/2mv^2
PE=mgy


The Attempt at a Solution



Ok, I got part a

(.5)*m*(3m/s)^2=m(9.80)(.2m)+(.5)*m*(vf)^2
vf= 2.25 m/s

But I am really not sure of how to approach part b. I thought about the equations for rotational kinematics, but the acceleration is not constant. Any hints?
 
Physics news on Phys.org
You are applying the same principle as before-- conservation of mechanical energy. In part (a) you specifically set the height of the top to be the diameter of the pipe. But now, you need to generalize what you did before to express the height of the pipe as a function of the angle.

To solve this problem you should sketch a picture of the cross-section of the pipe (it should be a circle), label the bottom and top, as well as a random point and clearly label the angle as measured from the bottom.

Once you have constructed that picture you can then use simple trig to find the height in terms of the radius of the pipe and the angle.

I could show you more, but instead of showing you the solution, I would like to see if you can solve it from that advise, I bet you can, good luck.
 
Ok, I got it. The height = r(1-cos theta)

So

r(1-cos theta)mg +.5*m*(v1)^2 = .5*m*(vo)^2

Solve for v1

v1= sqrt[(vo)^2+2rg(costheta-1)]

where v1 is the velocity at any position, vo is the velocity at the bottom, and r is the radius of the pipe

Thank you very much!
 
Awesome! I'm glad you solved it!
 
sorry this maybe a dumb question but how did you get the height
as r(1-cos theta) ?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top