Conservation of Net Mechanical Energy in SHM

AI Thread Summary
The discussion focuses on demonstrating the conservation of net mechanical energy in simple harmonic motion (SHM) for a simple pendulum. The user is struggling with showing that the derivative of the total energy equation, E = K + U, equals zero, indicating energy conservation. They derived the expression for energy and found that its derivative is not zero, leading to confusion about their calculations. Participants emphasize the importance of correctly substituting the angular velocity and understanding the relationship between kinetic and potential energy in SHM. The key takeaway is that the total mechanical energy remains constant, and the user needs to ensure proper differentiation and substitution in their calculations.
Habez
Messages
2
Reaction score
0
MENTOR Note: Thread moved here from Classical Physics hence no template

I have a question set that I need to be able to answer before my exam next month, I know how to answer all of them except this one. I get the feeling I'm being an idiot.

Show that the simple harmonic motion solution of the simple pendulum in the form $$\theta (t) = A\cos ({\omega _0}t)$$ (constant A) conserves net mechanical energy E = K + U.

I have the equation for E as E = \frac{1}{2}(m{v^2} + mgl{\theta ^2})
I want to show its derivative is equal to 0 obviously. After I substitute in \theta \left( t \right) and differentiate, I get \frac{{dE}}{{dt}} = \frac{{{A^2}mgl{\omega _0}\sin (2{\omega _0}t)}}{2}

Which is not 0... What am I doing wrong?
 
Last edited by a moderator:
Physics news on Phys.org
Habez said:
Which is not 0... What am I doing wrong?
(m.v.v )' is not 0, v changes with time
here is derivation---
te= ke + pe
= (i.w.w/2) + (c.theta.theta/2)
=(i.w0.w0.a.a.(sin(w0.t)^2). 0.5) + (c.a.a.(cos(w0.t)^2)/2) (since w=theta' , so w= -w0.A.sin(w0.t)
=(c.a.a.(sin(w0.t)^2)/2) +(c.a.a.(cos(w0.t)^2)/2) (since w0=(c/i)^0.5 , so c=i.w0.w0)
=ca.a/2 (which is a const)
 
hackhard said:
(m.v.v )' is not 0, v changes with time
here is derivation---
te= ke + pe
= (i.w.w/2) + (c.theta.theta/2)
=(i.w0.w0.a.a.(sin(w0.t)^2). 0.5) + (c.a.a.(cos(w0.t)^2)/2) (since w=theta' , so w= -w0.A.sin(w0.t)
=(c.a.a.(sin(w0.t)^2)/2) +(c.a.a.(cos(w0.t)^2)/2) (since w0=(c/i)^0.5 , so c=i.w0.w0)
=ca.a/2 (which is a const)
I'm sorry, I can't see what you're saying as I am struggling to see what you have wrote. $${{dE} \over {dt}}$$ has to be equal to 0 so that there is no change in the total energy, i.e. energy is conserved - right?
 
I guess in your notation
$$v=\dot{\theta}=-A \omega_0 \sin(\omega_0 t).$$
Plug this into the formula for the energy and remember what's ##\omega_0## in terms of the other parameters in the problem.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top