Correcting Errors in Conservative Line Integral Calculation

fonseh
Messages
521
Reaction score
2

Homework Statement


I am having question with part c , for both c1 and c2 , here's my working for c1 , i didnt get the ans though . My ans is -5 , but the given ans for c1 and c2 is 27 , is the ans wrong ? Or which part i did wrongly ?

Homework Equations

The Attempt at a Solution

 

Attachments

  • IMG_20161206_010836.jpg
    IMG_20161206_010836.jpg
    27.4 KB · Views: 396
  • IMG_20161206_011204.jpg
    IMG_20161206_011204.jpg
    29 KB · Views: 384
Physics news on Phys.org
## z=0 ## in the ## \hat{j} ## term, and the ## \hat{k} ## term in ## d \vec{r}/dt ## equals zero, so that both the ## \hat{j} ## and ## \hat{k} ## terms are equal to zero. You left off the ## t ## term in the ## \hat{i} ## integral term. With these corrections, I think you will get the correct answer.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top