ngkamsengpeter
- 193
- 0
Homework Statement
Given the tensor
<br /> F_{\mu \nu }= <br /> \left[ \begin{array}{cccc} 0 & -E_{x} & -E_{y} & -E_{z} \\ E_{x} & 0 & B_{z} &-B_{y} \\E_{y} & -B_{z} & 0 & B_{x} \\E_{z} & B_{y} & -B_{x} & 0 \end{array} \right]<br />
<br /> F^{\mu \nu }F_{\mu \nu }=2(B^2-\frac{E^2}{c^2})<br />
and metric tensor
<br /> n_{\mu \nu }= <br /> \left[ \begin{array}{cccc}c^2& 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -r^2 & 0 \\ 0 & 0 & 0 & -1 \end{array} \right]<br />
How to convert it into cylindrical coordinates, that is in terms of Eθ,Ez,Er
More info of this tensor can be viewed at http://en.wikipedia.org/wiki/Electromagnetic_tensor
Homework Equations
The Attempt at a Solution
I try to convert it using the transformation matrix and tensor transformation rule but it turns out that
<br /> F^{\mu \nu }F_{\mu \nu }≠2(B^2-\frac{E^2}{c^2})<br />
Can anyone give me some idea how to solve this?
Thanks.