Counting problem with Mobieus function

soopo
Messages
222
Reaction score
0

Homework Statement


How can you get from this
\frac {z(i-1) +i +1} {z(1-i) +i +1}
to this
= \frac { z-1 } {-z -i}
?

The Attempt at a Solution



SageMath does not simplify the result any further from the beginning.
The equivalence is based on some high Math.

I am not sure how you can deduce the equivalence.
 
Physics news on Phys.org
The expressions are not equal. Try z = 0, you get 1 in the first expression and -i in the second.
The valid equation is:

<br /> \frac {z-i} {-z-i} = \frac {z(i-1) +i +1} {z(1-i) +i +1} <br />

To check that just multiply and divide the LHS by (i - 1)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top