What is the current induced in a wire loop placed in a changing magnetic field?

AI Thread Summary
A closed square wire loop with a side of 4 cm is placed in a perpendicular, increasing magnetic field at a rate of 0.3 T/s. The resistance of the loop is 2 x 10^-3 Ω, leading to an induced electromotive force (E) calculated using Faraday's law of induction. The correct induced voltage is found to be -4.8 x 10^-4 V, resulting in an induced current of 0.24 A. The discussion highlights the importance of using the appropriate formulas for calculating induced current in changing magnetic fields. Understanding the relationship between induced current direction and magnetic field direction is also emphasized.
moenste
Messages
711
Reaction score
12

Homework Statement


A closed wire loop in the form of a square of side 4 cm is placed with its plane perpendicular to a uniform magnetic field, which is increasing at the rate of 0.3 T s-1. The loop has negligible inductance, and a resistance of 2 * 10-3 Ω. Calculate the current induced in the loop, and explain with the aid of a clear diagram the relation between the diraction of the induced current and the direction of the magnetic field.

Answer: 0.24 A.

2. The attempt at a solution
Well, I used the E = B L v and I = V / R formulas.

E = 0.3 * (4 / 100) = 0.012 V.

I = 0.012 / (2 * 10-3) = 6 A.

What's wrong here?
 
Physics news on Phys.org
Hi!

Here's a hint -
moenste said:
E = B L v
Does this formula seem to apply here? Could you please list the value of each of these variables?
 
  • Like
Likes moenste
LemmeThink said:
Hi!

Here's a hint -

Does this formula seem to apply here? Could you please list the value of each of these variables?
Hi!

E = voltage, B = magnetic field, L = length, v = velocity.

If know that this formula is not the best fit for this problem (we don't know velocity). But which one do you suggest?
 
Do you know Faraday's law of induction?
 
  • Like
Likes moenste
LemmeThink said:
Do you know Faraday's law of induction?
Got it from here. Thank you!

E = - N (d Φ / d t)

d Φ / d t = 0.3 T s-1 * A, where A = (4 / 100) * (4 / 100) = 1.6 * 10-3 m2.

E= - 1 * 0.3 * 1.6 * 10-3 = - 4.8 * 10-4 V.

I = V / R = 4.8 * 10-4 / 2 * 10-3 = 0.24 A.
 
  • Like
Likes LemmeThink
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top