Curve of intersection of 2 functions

melifaro
Messages
7
Reaction score
0

Homework Statement


A particle moves along the curve of intersection of shapes y = -x2 and z = x2 in the direction in which x increases. At the instant when the particle is at the point P(1,-1,1), its speed is 9cm/s and that speed is increasing at a rate of 3cm/s2. Find the velocity and acceleration of the particle at that instant

Homework Equations


||\vec{v}|| = 9

Derivative of ||\vec{v}|| = 3

\vec{v} = \vec{R'} where \vec{R} is the curve.

The Attempt at a Solution


I tried Googling it but I could not find a definite answer to my question. What I want to know is how do I find the \vec{R} (curve defined by intersections). I have never encountered a similar problem before and I don't really know how to approach it. If you could hint me the right direction, it would be greatly appreciated. :smile:
 
Last edited:
Physics news on Phys.org
A parametric representation such that x^2 = -y and x^2 = z should work. I'd recommend x=t, which gives you a simple parametric representation. This gives you the vector function. I'm sure you can go from there.
 
Char. Limit said:
A parametric representation such that x^2 = -y and x^2 = z should work. I'd recommend x=t, which gives you a simple parametric representation. This gives you the vector function. I'm sure you can go from there.

I tried that,

then R(t) = t i - t2j + t2k

R'(t) = i - 2t j + 2t k

and at given point P(1,-1,1) from equation of R(t) I get t = 1

So R'(1) = i - 2j + 2k , which is also velocity

But then speed, ||R'(1)|| = sqrt{1 + 4 + 4} = 3.. And according to the problem description, it should be 9.
It seems like R'(1) is actually giving the value of the change in speed (as defined in description) instead of the actual speed.

Am I missing something?

Thanks!
 
anyone?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top