Damped Oscillator and Oscillatory Driving Force

Click For Summary
The discussion centers on finding the steady state solution for a damped oscillator under an oscillatory driving force. The original expression provided by the user appears to have formatting issues, which complicates the identification of amplitude and phase. A corrected version of the equation is suggested, emphasizing the need for proper parentheses. Participants agree that to determine amplitude and phase, the equation should be rearranged into the form x = Cos(ωt - φ). The conversation highlights the importance of using LaTeX for clarity in mathematical expressions.
physconomics
Messages
22
Reaction score
0
Homework Statement
The equation is FCoswt = mx'' + myx' +mw_0^2x
- Find the steady state solution for the displacement x and the velocity x'
- Sketch the amplitude and phase of x and x' as a function of w
- Determine the resonant frequency for both the displacement and the velocity
- Defining deltaw as the full width at half maximum of the resonance peak, calculate deltaw/w_0 to leading order in y/w_0
- For a lightly damped driven oscillator near resonance, calculate the energy stored and the power supplied to the system. Confirm that Q = w_0/y.
Relevant Equations
Steady state solution is the particular solution
I found the steady state solution as
F_0(mw_0^2 - w^2m)Coswt/(mwy)^2 + (mw_0^2 -w^2m)^2
+ F_0mwySinwt/(mwy)^2 + (mw_0^2 -w^2m)^2
But I'm not sure how to sketch the amplitude and phase? Do I need any extra equations?
 
Physics news on Phys.org
Well, what is the expression for amplitude ?
And what is the expression for the phase ?

Oh, and
please use ##\LaTeX## so one can read your solution

$$
F_0(m\omega_0^2 - \omega^2m)\cos\omega t/(m\omega \gamma)^2 + (m\omega_0^2 -\omega^2m)^2
+ F_0m\omega \gamma\sin\omega t/(m\omega \gamma)^2 + (m\omega_0^2 -\omega^2m)^2 $$

which, if I reproduced it right, as it looks now, does not look familiar at all... did you check it satisfies the equation $$ m\ddot x + m\gamma \dot x +m\omega_0^2\;x = F\cos\omega t \ \ ?$$
 
There seem to be missing parentheses. I think the OP meant
$$\frac{F_0 m(\omega_0^2-\omega^2)}{(m\omega\gamma)^2 + m^2(\omega_0^2-\omega^2)^2}\cos\omega t + \frac{F_0 m\omega\gamma}{(m\omega\gamma)^2 + m^2(\omega_0^2-\omega^2)^2}\sin\omega t$$
 
I know, but that only became painfully clear once I typeset the litteral text in post #1.

After @physconomics posts the relevant equations for amplitude and phase we can proceed with this thread
 
$$
BvU said:
I know, but that only became painfully clear once I typeset the litteral text in post #1.

After @physconomics posts the relevant equations for amplitude and phase we can proceed with this thread
Yes, Vela was right. Sorry I'm new here and had no idea I could use LaTeX.
To get the amplitude and phase would I have to move it into the form ##x = Cos(\omega t - \phi)##?
 
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
I treat this question as two cases of Doppler effect. (1) When the sound wave travels from bat to moth Speed of sound = 222 x 1.5 = 333 m/s Frequency received by moth: $$f_1=\frac{333+v}{333}\times 222$$ (2) When the sound wave is reflected from moth back to bat Frequency received by bat (moth as source and bat as observer): $$f_2=\frac{333}{333-v}\times f_1$$ $$230.3=\frac{333}{333-v}\times \frac{333+v}{333}\times 222$$ Solving this equation, I get ##v=6.1## m/s but the answer key is...