Damped simple harmonic motion question

AI Thread Summary
The discussion revolves around calculating the undamped frequency (fo) of a damped oscillator with a given damped frequency (fd) of 100 Hz and a specific amplitude ratio of successive maxima. The user initially misapplies equations related to damped motion, leading to an incorrect conclusion that fo is less than fd. After correcting their calculations, they find that fo is approximately 99.39 Hz, which is indeed less than the calculated damped frequency. The consensus is that the undamped frequency should always be greater than the damped frequency due to the effects of damping on oscillation. The final calculations confirm the expected relationship between the two frequencies.
endusto
Messages
5
Reaction score
0

Homework Statement



The frequency fd of a damped oscillator is 100 Hz, and the ratio of the amplitudes of two successive maxima is one half. What is the undamped frequency f0 of this oscillator?

Homework Equations


this is the equation in my textbook for the position at time t of an underdamped harmonic oscillator:
x(t) = e^-(yt) * A cos (wd + ϕ)

where y (really supposed to be gamma) is a constant that affects how quickly the oscillator is damped and w (really supposed to be omega) is the angular velocity and ϕ is just an initial angle

i chose the underdamped equation because i believe there can not be any maxima if it is overdamped or critically damped.

Td = 2pi / wd = 2pi / sqrt(Wo^2 - y^2) = 0.01 (Td is the damped period, wd is damped angular velocity, wo is undamped angular velocity)

and the only other equations i used are T = 2π/w and T = 1/f

where w is once again the angular velocity

The Attempt at a Solution


one maxima occurs at t=0 and the next one at t=T. first i will calculate wd for the position equations.

Td = 1/fd = 1/100 = 0.01

Td = 2pi/w
0.01 = 2pi/wd
wd = 2pi/0.01 = 200pi

x(t) = e^-(yt) * A* cos(wd * t)

x(0) = e^-(y * 0) * A * cos(200pi * 0)) = A

so the first maxima is just an amplitude, which makes sense. i will now find the height of the next maxima, which occurs when t = T

x(T) = x(0.01) = e^-(0.01y) * (Acos(200pi)) = A*e^-(0.01y)

x(T) = A*e^-(0.01y) ( because cos(200pi) = 1)

x(T) makes sense as a maxima because its just a damped amplitude, there is no cos factor making it smaller. now the question said "the ratio of the amplitudes of two successive maxima is one half" so...

x(T)/x(0) = A*e^-(0.01y) / A = 1/2

e^-(0.01y) = 1/2

-0.01y = ln (1/2)
y = -100 ln (1/2) = 69.3147181

now I will solve for Wo, which will give To, which will give Fo. I believe my problem is somewhere in these steps (unless I am using some completely wrong equations...)

Td = 2pi / wd = 2pi / sqrt(Wo^2 - y^2) = 0.01
0.01 = 2pi / sqrt(wo^2 + 69.3147181^2)
sqrt(wo^2 + 69.3147181^2) = 200pi
wo^2 + 69.3147181^2 = sqrt(200pi)
wo = sqrt(sqrt(200pi) + 69.3147181) = 69.4952979

so wo is slightly greater than wd, which i expect

To = 2pi/wo = 0.0904116609
fo = 1/To = 11.0605202

now this is what i don't get. why is fo LESS than fd? did i do something wrong?
 
Physics news on Phys.org
endusto said:
sqrt(wo^2 + 69.3147181^2) = 200pi
wo^2 + 69.3147181^2 = sqrt(200pi)

It should be

wo^2 + 69.3147181^2 = [(200pi)]^2.


ehild
 
thanks ehild. so now i have

wo^2 + 69.3147181^2 = 200pi^2
wo = sqrt((200pi)^2 - 69.3147181^2) = 624.483503

To = 2pi/wo = 0.0100614112
Fo = 1/To = 99.3896363

very good makes sense thanks a lot
 
can someone please tell me quickly if it does make sense that fd > fo? is this answer now correct?
 
endusto said:
.
.
.
Td = 2pi / wd = 2pi / sqrt(Wo^2 - y^2) = 0.01 (Td is the damped period, wd is damped angular velocity, wo is undamped angular velocity)
.
.
.
Td = 2pi / wd = 2pi / sqrt(Wo^2 - y^2) = 0.01
0.01 = 2pi / sqrt(wo^2 + 69.3147181^2)
.
.
.

Looks like you switched a +/- sign in your work. The undamped frequency should be higher than the damped frequency; damping will slow down the oscillator.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top