Ulf
- 7
- 0
Homework Statement
for a compton-scattering-problem, i want to show that:
\delta(p_{10}+k_1-p_0-k)=p_0\delta(\underline{k}_1(\underline{p}+\underline{k})-\underline{k}\underline{p})
Homework Equations
the momentum- and energy-conversion-law for two particle scattering.
\underline{p}+\underline{k}=\underline{p}_1+\underline{k}_1
relations of kinematic-invariants
:
\underline{k}\underline{p}=\underline{k}_1\underline{p}_1
\underline{k}_1\underline{p}=\underline{k}\underline{p}_1
\underline{k}_1(\underline{p}+\underline{k})=\underline{k}\underline{p}
here \underline{p} denotes the electron 4-vector \underline{p}=\{p_0,\overline{p}\}, the same for k the 4-vector describing the photon \underline{k}=\{k_0,\overline{k}\}. no subscript and subscribt 1 denote initial and scattered particles respectively.
The Attempt at a Solution
do i have to use: \delta(f(x))=\frac{1}{|f'(x_0)|}\delta(x-x_0)? but how?
Last edited: