Derivation of the expression for exergy

AI Thread Summary
The discussion centers on the derivation of the exergy expression in "Fundamentals of Thermodynamics" by Moran et al., specifically addressing the neglect of the entropy generation term in the combined system. It is noted that this term can only be zero if the system and environment are at the same temperature, raising questions about the treatment of irreversibilities in the derivation. The conversation highlights that maximum work generation requires a reversible process, such as a Carnot cycle, which can still occur even if the system and surroundings are at different temperatures. The exergy is defined as the maximum non-PV work obtainable from a system in contact with an ideal reservoir at constant environmental conditions. Ultimately, the discussion clarifies that the Carnot engine's workings are integral to understanding exergy, despite the complexities of temperature differences.
Mohankpvk
Messages
102
Reaction score
3
I am using the book 'Fundamentals of thermodynamics' by Moran et al., In the exergy chapter, while deriving the expression for exergy ,a term representing the entropy generation in the combined system is neglected.Then the resulting expression is said to be the expression for exergy.But that entropy generation term can be zero only if the system and the environment(within the combined system) are at the same temperature.But even for system at a different temperature,the term is neglected.Are they deliberately neglecting the irreversibilities(to calculate max possible work) or am I not understanding it rightly?
 

Attachments

  • New Doc 2018-09-29 23.48.57_1.jpg
    New Doc 2018-09-29 23.48.57_1.jpg
    58.4 KB · Views: 422
Last edited:
Engineering news on Phys.org
Mohankpvk said:
I am using the book 'Fundamentals of thermodynamics' by Moran et al., In the exergy chapter, while deriving the expression for exergy ,a term representing the entropy generation in the combined system is neglected.Then the resulting expression is said to be the expression for exergy.But that entropy generation term can be zero only if the system and the environment(within the combined system) are at the same temperature.But even for system at a different temperature,the term is neglected.Are they deliberately neglecting the irreversibilities(to calculate max possible work) or am I not understanding it rightly?
Entropy generation can be zero if the system and it surroundings are at different temperatures, provided heat flow occurs between the surroundings (a reservoir) and the system at arbitrarily small temperature differences. For example, a Carnot engine operates between hot and cold reservoirs but heat transfer occurs between the system and reservoirs over infinitesimal temperature differences. Obtaining the maximum thermodynamic work from a system in moving between two states must necessarily involve a process in which heat flow occurs. Otherwise, there could be no work done at all.
 
  • Like
Likes Mohankpvk
Andrew Mason said:
Entropy generation can be zero if the system and it surroundings are at different temperatures, provided heat flow occurs between the surroundings (a reservoir) and the system at arbitrarily small temperature differences. For example, a Carnot engine operates between hot and cold reservoirs but heat transfer occurs between the system and reservoirs over infinitesimal temperature differences. Obtaining the maximum thermodynamic work from a system in moving between two states must necessarily involve a process in which heat flow occurs. Otherwise, there could be no work done at all.
Thank you for answering.So, to generate work, an engine cycle should be used to transfer heat between the system(at a higher state) and the environment(at ground state).If Carnot cycle is used, the net change in entropy of the combined system will be zero(at the end of complete cycle i.e. in case of carnot even at the end of a heat transfer process).So the entropy term can be zero(this case will give the max work).Is this right?
 
Mohankpvk said:
I am using the book 'Fundamentals of thermodynamics' by Moran et al., In the exergy chapter, while deriving the expression for exergy ,a term representing the entropy generation in the combined system is neglected.Then the resulting expression is said to be the expression for exergy.But that entropy generation term can be zero only if the system and the environment(within the combined system) are at the same temperature.But even for system at a different temperature,the term is neglected.Are they deliberately neglecting the irreversibilities(to calculate max possible work) or am I not understanding it rightly?
Even if the system is at a different temperature from the surroundings, the process can still be carried out reversibly if you have an ideal Carnot engine operating between the system temperature and surroundings temperature, such that, if the system is at a higher temperature than the surroundings, for example, the low temperature leg of the Carnot cycle is carried out at the surroundings temperature. As time progresses, and the system temperature becomes lower, you replace the original Carnot engine with a new one operating between the new system temperature and the same surroundings temperature. You continue doing this game plan until the system temperature has finally reached the surroundings temperature.

The exergy is basically the maximum amount of non-PV work you can obtain from a system operating in contact with an ideal reservoir at a constant environmental temperature and a surroundings at a constant environmental pressure. All heat transfer and all PV work are done using this idealized environment. Even though PV work also occurs within the Carnot engine, the working gas in the Carnot engine is not considered part of the surroundings, but part of the system, so the Carnot engine work is not considered exchange of PV work with the surroundings. It is thus part of the exergy.
 
  • Like
Likes Mohankpvk
Chestermiller said:
Even if the system is at a different temperature from the surroundings, the process can still be carried out reversibly if you have an ideal Carnot engine operating between the system temperature and surroundings temperature, such that, if the system is at a higher temperature than the surroundings, for example, the low temperature leg of the Carnot cycle is carried out at the surroundings temperature. As time progresses, and the system temperature becomes lower, you replace the original Carnot engine with a new one operating between the new system temperature and the same surroundings temperature. You continue doing this game plan until the system temperature has finally reached the surroundings temperature.

The exergy is basically the maximum amount of non-PV work you can obtain from a system operating in contact with an ideal reservoir at a constant environmental temperature and a surroundings at a constant environmental pressure. All heat transfer and all PV work are done using this idealized environment. Even though PV work also occurs within the Carnot engine, the working gas in the Carnot engine is not considered part of the surroundings, but part of the system, so the Carnot engine work is not considered exchange of PV work with the surroundings. It is thus part of the exergy.
Thank you.Nice answer.
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'd like to create a thread with links to 3-D Printer resources, including printers and software package suggestions. My motivations are selfish, as I have a 3-D printed project that I'm working on, and I'd like to buy a simple printer and use low cost software to make the first prototype. There are some previous threads about 3-D printing like this: https://www.physicsforums.com/threads/are-3d-printers-easy-to-use-yet.917489/ but none that address the overall topic (unless I've missed...
Back
Top