Lynne
- 12
- 0
Homework Statement
y= \frac{sin^2 x}{1+ ctgx} +\frac{cos^2 x}{1+ ctgx}
Find: y'
The Attempt at a Solution
Answer is-cos2x but again I can't find it.
Where am I making a mistake?
y'=(\ \frac{sin^2 x}{1+ ctgx} +\frac{cos^2 x}{1+ ctgx} \ )'= \frac{(sin^2 x)'(1+ ctgx) -( sin^2 x) (1+ ctgx)'}{(1+ ctgx)^2}\ + \ \frac{(cos^2 x)'(1+ tgx) - cos^2 x (1+ tgx)'}{(1+ tgx)^2} =
<br /> = \frac{sin2x( 1+ctgx) +1 }{(1+ ctgx)^2} +\frac{-sin2x(1+tgx)-1}{(1+ tgx)^2}<br />