Derivative of y=ln|2-x-5x^2|: 1+10x/-2+x+5x^2

  • Thread starter Thread starter 2slowtogofast
  • Start date Start date
2slowtogofast
Messages
134
Reaction score
1
y = ln|2-x-5x^2|

when you take the derivitve of somthing like this you can ignore the abs value signs right?

for the ans i got -1-10x / 2-x-5x^2
the answer is 1+10x / -2+x+5x^2

i obviously made some mistake some where because i have the same number just with different signs
 
Physics news on Phys.org
The two answers are the same. If the first answer is given by -a/b[/tex], the second one would be a/-b. The negative is just in a different place.
 
thanks i didt see that
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top