Deriving the needed wavefunction transformation for gauge symmetry?

quarky2001
Messages
31
Reaction score
0

Homework Statement


Take the Schrodinger equation for a point particle in a field:

i\hbar \frac{\partial \Psi}{\partial t} = \frac{1}{2m}(-i\hbar\nabla - q\vec{A})^2\Psi + q\phi\Psi

I'm supposed to determine what the transformation for Psi is that corresponds to the gauge transformation A\rightarrow A +\nabla F and \phi \rightarrow \phi - \frac{\partial F}{\partial t}

The Attempt at a Solution



I know what the transformation should be, since these transformations are actually derived the other way around in most textbooks, but I have no idea how to work from these transformations to get the necessary operator for \Psi \rightarrow \Psi\prime.
 
Physics news on Phys.org
Assume you have a function psi that satisfies the Schrodinger equation with the un-transformed A, phi, then ask what psi' needs to be to satisfy the Schrodinger equation with the transformed A', phi'.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top