Determine Work done on the puck?

  • Thread starter Thread starter jumpingjack90
  • Start date Start date
  • Tags Tags
    Work Work done
AI Thread Summary
To determine the work done on the puck, the initial and final kinetic energy must be calculated, considering the change in radius as the string is pulled. The puck's initial kinetic energy is calculated using the formula KE = 1/2 mv^2, resulting in approximately 0.3308 Joules. As the radius decreases due to the string being pulled, the puck's speed increases, requiring the use of angular momentum conservation to find the final velocity. The work done on the puck is then the difference between the initial and final kinetic energies, with the final kinetic energy needing to reflect the new velocity after the radius change. This approach highlights the importance of understanding the relationship between radius, velocity, and kinetic energy in rotational dynamics.
jumpingjack90
Messages
14
Reaction score
0
Determine Work done on the puck??

Homework Statement


The puck in the figure has a mass of 0.799 kg. Its original distance from the center of rotation is 76.2 cm, and the puck is moving with a speed of 91.0 cm/s. The string is pulled downward 38.2 cm through the hole in the frictionless table. Determine the work done on the puck.


Homework Equations


W=fd
centripetal force=mv^2/r
KE=1/2 mv^2

The Attempt at a Solution


Not really sure how to do this problem. I tried using the formula mv^2/r and (0.799)(0.910)^2/(0.762) = 0.868 Joules, but this is not the right answer.
 
Physics news on Phys.org


r is not 0.762 - it changes.

That's assuming I have correctly guessed what was on the image...
 


ok. I understand that the radius changes, but How exactly do you solve this problem with the equations given?
 


jumpingjack90 said:
ok. I understand that the radius changes, but How exactly do you solve this problem with the equations given?

Initial KE - Final KE is what you are looking for. The only factor contributing to the energy change is "pulling the string". There is no potential or friction in the problem so the total change in the energy equals Initial KE - Final KE which is the work done "by the puck" stick a negative sign in front of your result and that is the work done on the puck.
 


Initial KE= (1/2)(0.799)(0.910)^2= 0.33082595 J
Final KE= VF= 0 m/s so, (1/2)(0.799)(0)^2=0
0.33082595-0=-0.33082595 J which isn't the correct answer. What am I missing in the Final KE?
 


jumpingjack90 said:
Initial KE= (1/2)(0.799)(0.910)^2= 0.33082595 J
Final KE= VF= 0 m/s so, (1/2)(0.799)(0)^2=0
0.33082595-0=-0.33082595 J which isn't the correct answer. What am I missing in the Final KE?

The puck does not stop, you just pull the string thus reducing the radius, The force you apply by pulling the string applies no torque so angular momentum is conserved too.

mr1v1 = mr2v2

You now what r2 is

Now you can find v2 in terms of v1.

So you can find the change in kinetic energy.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top