Determing a polar orbit for a non-inverse square central force

^_^physicist
Messages
231
Reaction score
1

Homework Statement


A particle of unit mass is projected with a velocity v-(sub 0), at right angle to the radius vector at a distance 'a' from the origin of a center of attractive force given by:

f(r)= -k*(4/(r^3)+ (a^2)/(r^5)).

If (v-(sub 0))^2 = (9*k)/(2*(a^2)) find the polar equation of the resulting orbit.

Homework Equations


F=ma

Treat 1/r = u

acceleration in polar coordinates= (r*{double dot} - r*((theta) {dot})^2 * e-sub r) + (r*(theta) {double dotted} + 2*r {dotted} + (theta) {dot})e-sub theta. Where e-sub are units vectors.

theta{dot} = l*u^2, where l is angular momentum per mass.

The Attempt at a Solution



Ok this is kind of long so I may skip few steps (sorry):

m*((r{double dot}) - r*((theta){dot})^2 = f(r), since the angular componet of acceleration is zero for this situtation.

m*(r{double dot} - (theta{dot})^2) = f(u^-1)

m*(r{double dot} - (theta{dot})^2) = -k*(4/(u^3)+ (a^2)/(u^5)).

m* [ -l^2*u^2*d^2*u/d(theta)^2-1/u*(l^2*u^3)]=k*(4/u^3 +a^2/u^5)

d^2*u/d(theta)^2 + u= (k*(4/u^3 + a^2/u^5))/(m*l^2*u^2)

and then I get stuck. I have tried multiple avenues for trying to solve this diff. eq, but none of them seem to cut it.

Anyone have any ideas? If the suggestion for problem goes to using an energy relation, I have tried that too and I get stuck in a similar problem.
 
Last edited:
Physics news on Phys.org
wot... gives me a headache viewing non-latexed equations... anyway,

\frac{-4k}{r^3}\neq \frac{-4k}{u^3}

so basically, you have:
u''=-u-\frac{m}{l^2u^2}F(u)

you'll have an ugly non-linear term of u^3...
 
Last edited:
Sorry about the non-latex (I am working on it, I swear...but I use maple in the lab to write up equations so don't really have a need to use latex (except here).

Thanks for help, however, could you clarify with the f(u) statement: are you referring to the f(u^(-1)) or are you actually meaning f(u).

Because when I found the general form of the differential equation of an orbit in my textbook it gave it as f(u^(-1)).

But again thanks.
 
What tim_lou is pointing out is that, going from

^_^physicist said:
m*(r{double dot} - (theta{dot})^2) = f(u^-1)

m*(r{double dot} - (theta{dot})^2) = -k*(4/(u^3)+ (a^2)/(u^5)).

is incorrect, because f(u^-1)= -k*(4/((u-1)^3)+ (a^2)/((u-1)^5)), and not as you have written.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top