Determining temperature of a diatomic gas

  • Thread starter Thread starter Deoxygenation
  • Start date Start date
  • Tags Tags
    Gas Temperature
AI Thread Summary
To determine the temperature of a diatomic gas with 3.0 moles and an internal energy of 10 kJ, the average kinetic energy formula (5/2) kB T was initially applied. However, the calculation yielded 160 K instead of the expected 115 K, prompting a review of the degrees of freedom for diatomic molecules. It was clarified that diatomic gases have three translational, two rotational, and two vibrational degrees of freedom, leading to a total of seven degrees of freedom. Each degree contributes (1/2)kT, which aligns with the book's answer. The initial misunderstanding stemmed from incorrectly applying the degrees of freedom in the energy equation.
Deoxygenation
Messages
10
Reaction score
0
[SOLVED] Determining temperature of a diatomic gas

1. Assume 3.0 moles of a diatomic gas has an internal energy of 10kJ. Determine the temperature of the gas after it has reached equilibrium (assuming that molecules rotate and vibrate at that tmeperature).


2.Boltzmann's constant and # of moles 6.022x10^23



3.The average kinetic energy per diatomic gas molecule is (5/2) kB T where kB is Boltzmann's constant.
The number of molecules in 3 moles is 3 * 6.022 x 10^23, so I just solved for T:

10000 J = (5/2)* (1.3807 x 10^-23 J/K) * 3 * (6.022 x 10^23) * T


Which, I get 160k, but the answer is suppose to be 115k, which I have no idea what I did wrong, maybe the wrong constant perhaps? No clue. Thanks for any help given :D
 
Physics news on Phys.org
Everything looks fine. I just whipped out my calculator and got the same answer. You *might* be missing something about the internal energy, i.e. maybe you can't equate U = 5/2kT, but off the top of my head it looks fine.

It's possible that the book is wrong. Wouldn't be the first time.
 
Awesome, that's what I thought it could be a book error. I will go and ask my teacher about this whenever its possible, thanks for your help :+)
 
Hi Deoxygenation,

Deoxygenation said:
1. Assume 3.0 moles of a diatomic gas has an internal energy of 10kJ. Determine the temperature of the gas after it has reached equilibrium (assuming that molecules rotate and vibrate at that tmeperature).


2.Boltzmann's constant and # of moles 6.022x10^23



3.The average kinetic energy per diatomic gas molecule is (5/2) kB T where kB is Boltzmann's constant.
The number of molecules in 3 moles is 3 * 6.022 x 10^23, so I just solved for T:

10000 J = (5/2)* (1.3807 x 10^-23 J/K) * 3 * (6.022 x 10^23) * T


Which, I get 160k, but the answer is suppose to be 115k, which I have no idea what I did wrong, maybe the wrong constant perhaps? No clue. Thanks for any help given :D

I think the factor of (5/2) is incorrect here. These diatomic molecules are vibrating and rotating, so the degrees of freedome are:

three from translation (x,y,z)
two from rotation (the two axes perpendicular to the line joining the atoms)
two from vibration (kinetic and potential energy)

Each degree of freedom will give (1/2)kT of energy per molecule, and so I think the answer in your book is correct.
 
Oooo, wow, good thing I came back and check out the question. Ok, that's what must of been wrong. Thank you for finding the error :+)
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...

Similar threads

Replies
3
Views
1K
Replies
5
Views
3K
Replies
5
Views
2K
Replies
7
Views
3K
Replies
2
Views
3K
Replies
5
Views
3K
Back
Top