Diffe Q, a forced harmonic oscillator

2cansam
Messages
2
Reaction score
0
okay this is kind of a quick one when youre solving a forced harmonic oscillator for an initial condition by the method of undetermined coefficients, you do the part for the homogenoues equation first and come up with somethign like ke^at + ce^bt. Now when you goto solve for those constants k and c using your initial conditions do you use the general soltion form the nonhomogenous part as well? so it would either be ke^at + ce^bt = d -or- ke^at + ce^bt+re^dt = f

Thanks in advance and sorry about my rapant use of variables and poor math notation
 
Physics news on Phys.org
Yes, of course. The initial conditions apply to the function that satisfies the entire equation. You must use that function, both "homogeneous" and "non-homogeneous" parts to satisfy the initial conditions.

For example, to solve y"+ 4y= x, y(0)= 0, y'(0)= 0.
The associated homogeneous equation is y"+ 4y= 0 which has characteristic equation r2+ 4= 0 and so characteristic values 2i and -2i. The general solution to that homogeneous equation is
y(x)= kcos(2x)+ c sin(2x). Now, using the method of "undetermined coefficients, we seek a particular solution to the entire equation of the form y(x)= Ax+ B. Then y'= A and y"= 0 so the equation becomes
0+ 4(Ax+ B)= 4Ax+ 4B= x. Clearly, A= 1/4 and B= 0. The general solution to the entire equation is y(x)= kcos(2x)+ csin(2x)+ x/4. Of course, then, y'(x)= -2ksin(2x)+ 2ccos(2x)+ 1/4.

Now, we have y(0)= k= 0 and y'(0)= 2c+ 1/4= 0 so c= -1/8. The solution to the problem is y(x)= -(1/8)sin(2x)+ x/4.

Since y(x)= 0 (y identically equal to 0) satisfies any homogeneous differential equation, if we just used the homogeneous equation to satisfy these initial conditions we would have just got y(x)= 0 and so, adding the particular solution, y(x)= x/4 which does NOT satisfy
y'(0)= 0.
 
thanks man , haha yeah i guess it is pretty obvious looking back at it now. Thanks a bunch man
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top