Differential Cartesian Coordinates Into Cylindrical Coordinates

sorter
Messages
47
Reaction score
0
Has to convert B6-1 into B6-2 Source Transport Phenomenon 2nd ed -

sxgd39.jpg
 
Physics news on Phys.org
I can't even start solution
No idea how to convert subscipt from vx to vr and or to vtheta?
 
You are to find the radial component of the transport equation.

Set up the relevant quantities and relationships, then we'll help you.
 
In the first equation: substitute Vx = Vr * Cos (theta) Vy = Vr * Sin (theta) Vz = Vz

but how do I get V(theta)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top