Differential Equation: Finding the Particular Solution for 4y'-4y=x*e^(3x)

nns91
Messages
301
Reaction score
1

Homework Statement



4y'-4y=x*e^(3x)

Homework Equations



None

The Attempt at a Solution



The question is to find the particular solution

So I kinda know the way to solve this thing but the point is the start. I cannot figure out what will I set my y equal to. if it's only e^(3x) I will set my y=A*x*e^3x then find y' and substitute in the original equation to find the particular solution.
 
Physics news on Phys.org
4y'-4y=x*e^(3x)
4(D-1)y=x*e^(3x)
4(D-3)^2(D-1)y=0
solve
4(D-3)^2(D-1)y=0
then eliminate the extraneous solutions of

4(D-1)y=x*e^(3x)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top