protonchain
- 98
- 0
Homework Statement
What is y(x) [y as a function of x] given that
Homework Equations
\frac{dy}{dx} = 3\frac{y}{x}
where you are given the boundary condition that y = y_0 at x = x_0 where y_0 and x_0 are constants.
The Attempt at a Solution
Separating variables \Rightarrow \frac{dy}{y} = \frac{3 dx}{x}
Integrating \Rightarrow \int{\frac{dy}{y}} = \int{\frac{3 dx}{x}
Integrals give \Rightarrow ln(y) = 3 ln(x) + C
Given the boundary conditions then \Rightarrow ln(y_0) = 3 ln(x_0) + C
Therefore \Rightarrow C = ln(y_0) - 3ln(x_0) = ln(\frac{y_0}{x_0^3})
Plugging back into ln(y) = 3 ln(x) + C gives
ln(y) = 3 ln(x) + ln(\frac{y_0}{x_0^3})
Therefore \Rightarrow y = exp\left(ln(x^3) + ln(\frac{y_0}{x_0^3})\right)
\Rightarrow y = exp\left(ln(x^3 \bullet \frac{y_0}{x_0^3})\right) \Rightarrow y = y_0(\frac{x}{x_0})^3