Differential of a 2-form: How to Compute df Using the Wedge Product?

  • Thread starter Thread starter tazzzdo
  • Start date Start date
  • Tags Tags
    Differential
tazzzdo
Messages
47
Reaction score
0

Homework Statement



Compute the differentials of the following form:

Homework Equations



f = exy dy ^ dz

The Attempt at a Solution



I'm a little confused on how to work with the wedge product. If I'm looking for df, should I start by calculating the dual f*? Or does the dual not come into play?
 
Physics news on Phys.org
No, there is no reason to worry about the dual. For any f, df= (\partial f/\partial x)dx+ (\partial f/\partial y)dy+ (\partial f/\partial z)dz.

If
f= e^{xy} dy^dz then
df= (\partial e^{xy}/\partial x)dx\^dy\^dz+ (\partial e^{xy}/\partial y)dy\^dy\^dz+ (\partial e^{xy}/\partial z)dz\^dy\^dz
Remember, of course, that the wedge product is "anti-symmetric".
 
So

df = yexy dx ^ dy ^ dz + xexy dy ^ dy ^ dz ? Is that the answer?
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top