Dirac-Delta Functions and Double Integrals

  • Thread starter Thread starter zheng89120
  • Start date Start date
  • Tags Tags
    Functions
zheng89120
Messages
139
Reaction score
0

Homework Statement



show that \delta(x-ct)\delta(x+ct) = \delta(x)\delta(t)

P.S. sorry I mean't:

show that 2C*\delta(x-ct)\delta(x+ct) = \delta(x)\delta(t)

Homework Equations



calculus and Dirac-delta properties

The Attempt at a Solution



d/dx \int_{-\infty}^x\delta(x-ct)\delta(x+ct) = \delta(x)\delta(t) dx

P.S. sorry I mean't:

2C*d/dx \int_{-\infty}^x\delta(x-ct)\delta(x+ct) = ...

there are a couple of really weird steps that somebody else used after the above
 
Last edited:
Physics news on Phys.org
zheng89120 said:

Homework Statement



show that \delta(x-ct)\delta(x+ct) = \delta(x)\delta(t)

Homework Equations



calculus and Dirac-delta properties

The Attempt at a Solution



d/dx \int_{-\infty}^x\delta(x-ct)\delta(x+ct) = \delta(x)\delta(t) dx

there are a couple of really weird steps that somebody else used after the above

Why are you taking the derivative? How is the Dirac delta function defined?
 
Hi zheng89120! :smile:

Do you know how to calculate for any generic function f(u,v):
\iint f(x-ct, x+ct) 2c \delta(x-ct) \delta(x+ct) dxdt

And do you also know how to calculate this double integral after a parameter transformation to (u, v), where u=x-ct and v=x+ct?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top