Dirac Lagrangian invariance under chiral transformation

ppedro
Messages
22
Reaction score
0
Consider the Dirac Lagrangian,

L =\overline{\psi}\left(i\gamma^{\mu}\partial_{\mu}-m\right)\psi,

where \overline{\psi}=\psi^{\dagger}\gamma^{0}, and show that, for \alpha\in\mathbb{R} and in the limit m\rightarrow0, it is invariant under the chiral transformation

\psi\rightarrow\psi'=e^{i\alpha\gamma_{5}}\psi

\psi^{\dagger}\rightarrow\left(\psi^{\dagger}\right)'=\psi^{\dagger}e^{-i\alpha\gamma_{5}}

Attempt at a solution


\begin{array}{ll}<br /> L&#039; &amp; =\overline{\psi}&#039;\left(i\gamma^{\mu}\partial_{\mu}-m\right)\psi&#039;\\<br /> &amp; =\left(\psi^{\dagger}\right)&#039;\gamma^{0}\left(i\gamma^{\mu}\partial_{\mu}-m\right)\psi&#039;\\<br /> &amp; =\psi^{\dagger}e^{-i\alpha\gamma_{5}}\gamma^{0}\left(i\gamma^{\mu}\partial_{\mu}-m\right)e^{i\alpha\gamma_{5}}\psi\\<br /> &amp; =\underset{(i)}{\underbrace{i\psi^{\dagger}e^{-i\alpha\gamma_{5}}\gamma^{0}\gamma^{\mu}\partial_{\mu}e^{i\alpha\gamma_{5}}\psi}}-\underset{(ii)}{\underbrace{m\psi^{\dagger}e^{-i\alpha\gamma_{5}}\gamma^{0}e^{i\alpha\gamma_{5}}\psi}}\\<br /> &amp; =<br /> \end{array}

For (ii) I tried using \exp\left(s\hat{X}\right)\hat{Y}\exp\left(-s\hat{X}\right)=\hat{Y}+s\left[\hat{X},\hat{Y}\right] to get

\begin{array}{ll}<br /> (ii) &amp; =m\psi^{\dagger}e^{-i\alpha\gamma_{5}}\gamma^{0}e^{i\alpha\gamma_{5}}\psi\\<br /> &amp; =m\psi^{\dagger}\left(\gamma^{0}-i\alpha\left[\gamma_{5},\gamma^{0}\right]\right)\psi\\<br /> &amp; =<br /> \end{array}

Can you help me finish this?
 
Physics news on Phys.org
Hint: ##\gamma_5## anti-commutes with all gamma matrices, including ##\gamma^0##.
 
Orodruin said:
Hint: ##\gamma_5## anti-commutes with all gamma matrices, including ##\gamma^0##.

I don't see it... Do you mean I should use that in (i) while also applying BCH's formula?
 
ppedro said:
I don't see it... Do you mean I should use the in (i) while also aplying BCH's formula?
There is no point in using the BCH formula. Just use the anti-commutativity.
 
How can I anti-commute with something that's in the exponent?
 
ppedro said:
How can I anti-commute with something that's in the exponent?
Use the series expansion of the exponent.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top