Direction of current in Kirchoff's second law

AI Thread Summary
The discussion centers on the application of Kirchhoff's second law and the direction of current flow in circuits. It clarifies that current direction is arbitrary and can be defined as positive or negative based on circuit analysis, with negative values indicating a reversal of the assumed direction. The importance of closed loops in circuit analysis is emphasized, as currents must circulate within a loop to comply with Kirchhoff's law. The conversation also touches on the integration of Faraday's Law to explain the necessity of closed paths for current flow. Overall, the key takeaway is that understanding current direction and loop closure is essential for proper application of Kirchhoff's second law.
Roroy
Messages
9
Reaction score
0
Hello,

I'm going through Kirchoff's second law, and stumbled across this example on this page:

kirchhoff-2nd-law.jpg


In the image above, you can see that the blue arrows (both arrow 1 and arrow 2) indicate the direction that the current goes in. However, I am wondering why the current cannot go as per the red and green arrows depicted in the image below?
What stops the electrons from going from Negative end of 10V battery to positive end of 20V battery (as per red arrow)? What stops them going from negative end of 20V to positive end of 10V (as per green arrow)?

kirchhoff_2nd_law.jpg


Any help much appreciated.
 
Physics news on Phys.org
Roroy said:
What stops the electrons from going from Negative end of 10V battery to positive end of 20V battery (as per red arrow)? What stops them going from negative end of 20V to positive end of 10V (as per green arrow)?
Nothing. The current (not the electrons) goes wherever it needs too go. In your first example, the current arrows does not indicate where the current goes, they are just indicators that you are going to use when calculating the currents. If one of the current turns out to be negative - you just guessed wrong and the current goes against the arrow.
 
  • Like
Likes CWatters
But it's not wrong to get negative currents. How you choose the direction of currents in circuit analysis is arbitrary. Maybe it's intuitive to have only positive currents, but it's not necessary. For AC you have anyway time-dependent currents with positive and negative values like ##i(t)=i_0 \cos(\omega t)## :-).
 
  • Like
Likes CWatters and Dale
Hold on a min folks. I agree that it doesn't matter if 1) or 2) are clockwise or anticlockwise as long as you are consistent but...

In the first image the arrows 1) and 2) show the currents going right around their respective loops. For example 1) goes from the +ve of the 10V battery all the way around the left hand loop back to the +ve of the 10V battery. eg back to where it started.

In the second image the currents don't go around a loop at all. The red arrow starts at the +ve of the 10V battery and ends at the -ve of the 20V battery. It's not a closed loop. I don't think that works at all as far as Kirchoff's second law is concerned. However if someone wants to prove me wrong...

Edit: If you look at the 10V battery the current leaving the +ve terminal is the red current. The current entering the -ve terminal is the green current. That implies the red and green currents must be the same value which clearly doesn't have to be true.
 
  • Like
Likes Roroy
CWatters said:
Hold on a min folks. I agree that it doesn't matter if 1) or 2) are clockwise or anticlockwise as long as you are consistent but...

In the first image the arrows 1) and 2) show the currents going right around their respective loops. For example 1) goes from the +ve of the 10V battery all the way around the left hand loop back to the +ve of the 10V battery. eg back to where it started.

In the second image the currents don't go around a loop at all. The red arrow starts at the +ve of the 10V battery and ends at the -ve of the 20V battery. It's not a closed loop. I don't think that works at all as far as Kirchoff's second law is concerned. However if someone wants to prove me wrong...

Edit: If you look at the 10V battery the current leaving the +ve terminal is the red current. The current entering the -ve terminal is the green current. That implies the red and green currents must be the same value which clearly doesn't have to be true.

This cleared a lot of it up! Thanks!
 
Indeed the loop must be closed. What you do there is just to integrate Faraday's Law over a surface ##S## with boundary ##\partial S## (which is necessarily a closed loop), using Stokes's theorem
$$\frac{1}{c} \dot{\vec{B}}=-\vec{\nabla} \times \vec{E} \; \Rightarrow \; \frac{1}{c} \int_S \mathrm{d} \vec{S} \cdot \dot{\vec{B}}=-\int_{\partial S} \mathrm{d} \vec{x} \cdot \vec{E}.$$
You can integrate along the circuit, and as long as it is at rest you get
$$\mathcal{E}=\int_{\partial S} \mathrm{d} \vec{S} \cdot \vec{E}=-\frac{1}{c} \dot{\Phi}_S=-\frac{1}{c} \frac{\mathrm{d}}{\mathrm{d} t} \int_S \mathrm{d} \vec{S} \cdot \vec{B}.$$
 
I was using the Smith chart to determine the input impedance of a transmission line that has a reflection from the load. One can do this if one knows the characteristic impedance Zo, the degree of mismatch of the load ZL and the length of the transmission line in wavelengths. However, my question is: Consider the input impedance of a wave which appears back at the source after reflection from the load and has traveled for some fraction of a wavelength. The impedance of this wave as it...
Back
Top