Why Is the Displacement Graph Parabolic in a Ticker Tape Experiment?

  • Thread starter Thread starter Missy81590
  • Start date Start date
  • Tags Tags
    Displacement Graph
AI Thread Summary
In a ticker tape experiment, the displacement graph is parabolic because it represents the relationship between displacement and time for an object undergoing uniform acceleration. The vertical axis shows displacement, while the horizontal axis represents time, indicating that as time progresses, displacement increases at an accelerating rate. The linear velocity graph results from the constant change in displacement over equal time intervals, reflecting uniform acceleration. A parabolic displacement graph indicates that the object is accelerating, as the curvature of the graph shows increasing velocity over time. Understanding these relationships is crucial for analyzing motion in physics.
Missy81590
Messages
11
Reaction score
0
Hi all,

I just had to do an experiment with ticker tape. Its a very common experiment dealing with displacement, velocity and acceleration. I have to graph each verse time. I figured out displacement would be a parabolic graph, but i don't understand why. Can someone please explain that for me? Thank you!
 
Physics news on Phys.org
also, why would velocity graph be linear?
 
What does a parabolic displacement graph tell you? Think what are on your horizontal and vertical axis and think about the object moving in that manner.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top