Do Lx and Lz Angular Momentum Operators Exhibit an Uncertainty Relation?

leviathanX777
Messages
39
Reaction score
0
The operators used for the x and y components of angular momentum are:

7B%5Cpartial%7D%7B%5Cpartial%7Bz%7D%7D%20%20-%20z%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%7By%7D%7D).jpg


7B%5Cpartial%7D%7B%5Cpartial%7Bx%7D%7D%20%20-%20x%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%7Bz%7D%7D).jpg


Show that Lx and Lz obey an uncertainty relation




2. No relevant equations.




The Attempt at a Solution



I'm going on that the assumption that if LxLy - LyLz does not equal zero then they don't commute and have an uncertainty relation. However I can only get this equal to zero and don't know how to show the uncertainty rrelation if I achieve one.
 
Physics news on Phys.org
leviathanX777 said:
I'm going on that the assumption that if LxLy - LyLz does not equal zero then they don't commute and have an uncertainty relation. However I can only get this equal to zero and don't know how to show the uncertainty rrelation if I achieve one.

if you mean:

[Lx, Ly] = LxLy - LyLx

then it does not equal to zero, angular moment is the cross product: r x p

so Lx = y.Pz - z.Py Ly = x.Pz - z.Px

where x and y and z are position operators and Px, Py and Pz are momentum operators, stick those into your commutator and try again, you should end up with

[Lx, Ly] = ihLz

where h is the reduced Planck constant. and Lz is the Angular momentum operator for z axis
 
It would also help if you showed us your calculation of the commutator so we can see where your error is.
 
Ah I got it solved in the end. Just made a minor mistake. Thanks!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top