Do Lx and Lz Angular Momentum Operators Exhibit an Uncertainty Relation?

leviathanX777
Messages
39
Reaction score
0
The operators used for the x and y components of angular momentum are:

7B%5Cpartial%7D%7B%5Cpartial%7Bz%7D%7D%20%20-%20z%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%7By%7D%7D).jpg


7B%5Cpartial%7D%7B%5Cpartial%7Bx%7D%7D%20%20-%20x%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%7Bz%7D%7D).jpg


Show that Lx and Lz obey an uncertainty relation




2. No relevant equations.




The Attempt at a Solution



I'm going on that the assumption that if LxLy - LyLz does not equal zero then they don't commute and have an uncertainty relation. However I can only get this equal to zero and don't know how to show the uncertainty rrelation if I achieve one.
 
Physics news on Phys.org
leviathanX777 said:
I'm going on that the assumption that if LxLy - LyLz does not equal zero then they don't commute and have an uncertainty relation. However I can only get this equal to zero and don't know how to show the uncertainty rrelation if I achieve one.

if you mean:

[Lx, Ly] = LxLy - LyLx

then it does not equal to zero, angular moment is the cross product: r x p

so Lx = y.Pz - z.Py Ly = x.Pz - z.Px

where x and y and z are position operators and Px, Py and Pz are momentum operators, stick those into your commutator and try again, you should end up with

[Lx, Ly] = ihLz

where h is the reduced Planck constant. and Lz is the Angular momentum operator for z axis
 
It would also help if you showed us your calculation of the commutator so we can see where your error is.
 
Ah I got it solved in the end. Just made a minor mistake. Thanks!
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top