omega-centauri
- 9
- 1
Do sound waves increase the temperature of the medium they are traveling through?
omega-centauri said:Does it have to do with the frequency of the wave and also the natural frequency of the medium (is there such a thing?)
Reasonable argument.jon connell said:Reminds me of an engineering question I often raise without answer: Topic - Absorbed light eventually ends up as phonons: Any thoughts on the truth of the following please?
Waste-heat generated by lighting fixtures and electronic control equipment within a space:
Engineers regularly claim a reduced HVAC cooling load arising from efficient electronic conversion systems - meaning more light + less waste heat (as control equipment losses) produces a lowered thermal load on a spaces HVAC system - and is therefore a more cost effective equipment solution.
However, it has always struck me that (in some theoretical perfectly closed space), all light bouncing from walls eventually is eventually 100% absorbed by the reflective surfaces - and in turn eventually ends up as phonons in those floors and walls - which at some point (as above, sound=heat) presents as thermal energy in that same space. (Ignoring thermal conduction loss to outside of the space)
So, imho a theoretical 100 Watts of electrical energy input to a given closed space should all end up as thermal energy in that space regardless of what form it takes in the interim. Or, [light plus waste heat == phonons plus waste heat], literally 100W Energy in=100W Heat out.
All things being equal, the only difference in the room's ambient temperature (whether using efficient or inefficient electronic conversion equipment) would only be in the time taken for each respective means to reach thermal equilibrium. Efficient conversion gear would only change the timing of events. Claim then: Conversion efficiency of electronic equipment changes only the energy path, not the destination. (Again, in a thought experiment and hypothetical perfectly closed space)