bomba923 said:
Thanks
From my understanding of the
set-theoretic limit, in order for
\mathop {\lim }\limits_{n \to \infty } \bigcup\limits_{i = 0}^{n!} {\left\{ {\frac{i}{{n!}}} \right\}} = \mathbb{Q} \cap \left[ {0,1} \right]
I must show that
\begin{gathered}<br />
\mathop {\lim }\limits_{n \to \infty } \inf \bigcup\limits_{i = 0}^{n!} {\left\{ {\frac{i}{{n!}}} \right\}} = \mathop {\lim }\limits_{n \to \infty } \sup \bigcup\limits_{i = 0}^{n!} {\left\{ {\frac{i}{{n!}}} \right\}} \Rightarrow \hfill \\<br />
\mathop {\lim }\limits_{k \to \infty } \bigcup\limits_k {\bigcap\limits_{n \geqslant k} {\bigcup\limits_{i = 0}^{n!} {\left\{ {\frac{i}{{n!}}} \right\}} } } = \mathop {\lim }\limits_{k \to \infty } \sup \bigcap\limits_k {\bigcup\limits_{n \geqslant k} {\bigcup\limits_{i = 0}^{n!} {\left\{ {\frac{i}{{n!}}} \right\}} } } \hfill \\ <br />
\end{gathered}
No, you need to show that:
\mathop {\liminf} _{n \to \infty} \bigcup _{i=0} ^{n!} \left \{\frac{i}{n!}\right \} = \mathop {\limsup} _{n \to \infty} \bigcup _{i=0} ^{n!} \left \{ \frac{i}{n!}\right \} = \mathbb{Q} \cap [0,\, 1]
and to show that, you need to show:
\bigcup _{k = 0} ^{\infty} \bigcap _{n = k} ^{\infty} \bigcup _{i=0} ^{n!} \left \{ \frac{i}{n!}\right \} = \bigcap _{k = 0} ^{\infty} \bigcup _{n = k} ^{\infty} \bigcup _{i=0} ^{n!} \left \{ \frac{i}{n!}\right \} = \mathbb{Q} \cap [0,\, 1]
Alternatively, you can use the first method on the link given, by looking at what they call "indicator variables." However, I think the method you started with is easy enough.
\bigcup _{k = 0} ^{\infty} \bigcap _{n = k} ^{\infty} \bigcup _{i=0} ^{n!} \left \{ \frac{i}{n!}\right \} = \bigcup _{k = 0} ^{\infty} \bigcup _{i=0} ^{k!} \left \{ \frac{i}{k!}\right \} = \mathbb{Q} \cap [0,\, 1]
The first equality holds because if m > n, then
\bigcup _{i=0} ^{n!} \left \{ \frac{i}{n!}\right \} \subset \bigcup _{i=0} ^{m!} \left \{ \frac{i}{m!}\right \}[/itex]<br />
<br />
since if m > n, then 1/n! is just a multiple of 1/m!. The second equality holds because every fraction will occur, because the fraction a/b in [0, 1] will occur when k = b, since a/b is just a multiple of 1/b!, specifically a/b = [a(b-1)!] * (1/b!) and clearly [a(b-1)!] <u><</u> b! otherwise a/b > 1.<br />
<br />
Also:<br />
<br />
\bigcap _{k = 0} ^{\infty} \bigcup _{n = k} ^{\infty} \bigcup _{i=0} ^{n!} \left \{ \frac{i}{n!}\right \} = \bigcap _{k = 1} ^{\infty} (\mathbb{Q} \cap [0,\, 1]) = \mathbb{Q} \cap [0,\, 1]<br />
<br />
The second equality holds for obvious reasons. The first is also obvious, especially given what I said about the liminf just before this, and you can figure that out on your own.