Does the pressure of a gas always decrease as the volume increases?

AI Thread Summary
The discussion centers on the relationship between pressure, volume, and work done by a gas during expansion in a cylinder, as described by the ideal gas law (PV = nRT). It highlights that when a gas expands at constant temperature, its pressure decreases as volume increases. However, for expansion to occur, the gas pressure must exceed the opposing atmospheric pressure. The conversation clarifies that while Newton's third law states forces are equal and opposite, these forces act on different objects, allowing for the gas to expand when its pressure is greater than atmospheric pressure. The forces acting on the piston, including gas pressure and atmospheric pressure, are analyzed, leading to the conclusion that if the gas pressure equals atmospheric pressure, no expansion occurs. The discussion effectively resolves the confusion regarding the application of Newton's laws in this context, emphasizing that the pressure exerted by the gas must be greater than atmospheric pressure for movement to happen.
gkangelexa
Messages
81
Reaction score
1
PV = nRT

When a gas in a cylinder expands, the gas pushes the piston upward against a constant opposing external atmospheric pressure P. The work done by the gas on the surroundings is w= -P\DeltaV

\DeltaV is the change in volume

My question is:
Assuming the Temperature stays constant (as my book does), then as the gas expands (the volume increases) then the Pressure must also decrease, right? bc PV = nRT and everything else is constant...

But pressure is a force, and according to Newton, every force has an equal and opposing force. So the pressure that the gas exerts must equal the atmospheric pressure, right?
But how can this be true if the pressure of the gas is decreasing as the volume is increasing?
 
Chemistry news on Phys.org
Let's suppose T and n fixed. If you don't apply any other forces from the outside besides the atmospheric pressure, the expansion can happen only if the pressure of the perfect gas is greater than the atmospheric pressure.
The work done by the gas can be correctly calculated using your formula, but in this case p is not the pressure of the gas during the expansion. You're right when you say that in this case if the volume increases the pressure decreases.
If the pressure of the gas is equal to the atmospheric pressure, the system is in equilibrium and there would be no expansion.
 
Last edited:
vuellesse said:
Let's suppose T and n fixed. If you don't apply any other forces from the outside besides the atmospheric pressure, the expansion can happen only if the pressure of the perfect gas is greater than the atmospheric pressure.
The work done by the gas can be correctly calculated using your formula, but in this case p is not the pressure of the gas during the expansion. You're right when you say that in this case if the volume increases the pressure decreases.
If the pressure of the gas is equal to the atmospheric pressure, the system is in equilibrium and there would be no expansion.


I'm confused because of Newton's law where it says that the force of A on B is equal and opposite to the force of B on A.
So shouldn't the pressure of the gas on the atmosphere equal the pressure of the atmosphere on the gas?
 
Let's think the cylinder as if it has one base free to move. The gas inside the cylinder applies a pressure p on the base (so the force is F_in=p S, where S is the area of the base). Because of Newton's law, the base itself applies on the gas the same force (in opposite direction). Moreover, the gas outside the cylinder applies a pressure p_atm on the base (so the force this time is F_out= - p_atm S; the minus sign is needed because the two forces are opposite in direction), while the base applies on the outside gas (- F_out). Newton's law is not violated. In conclusion, on the base the total force is F=F_in - F_out=(p - p_atm) S, so the expansion happens when the two pressures are different.

In other words, the two forces (equal and opposite) considered by Newton's law are not to be applied on the same object (otherwise they always cancel each other and there would be no motion at all).

ps Sorry for my English, I hope I made myself clear enough.
 
Remember these forces act on a piston. The piston may have a mass 'm' or be considered mass-less. The force applied by the gas on the piston is P*A, but since P is a function of volume like you stated, the force is a variable force. The other force applied on the piston is from the atmospheric pressure and is Patm*A. Notice in reality there would also be a friction force between the piston and the cylinder wall. So summing forces on the piston would result in:

A*(nRT/V)-Patm*A = m*a

Now if m=0 or a=0 then you arrive at the steady state where the pressure of the gas is equal to atmospheric pressure.
 
Wow. Yes it is clear now. Thank you!
 
It seems like a simple enough question: what is the solubility of epsom salt in water at 20°C? A graph or table showing how it varies with temperature would be a bonus. But upon searching the internet I have been unable to determine this with confidence. Wikipedia gives the value of 113g/100ml. But other sources disagree and I can't find a definitive source for the information. I even asked chatgpt but it couldn't be sure either. I thought, naively, that this would be easy to look up without...
I was introduced to the Octet Rule recently and make me wonder, why does 8 valence electrons or a full p orbital always make an element inert? What is so special with a full p orbital? Like take Calcium for an example, its outer orbital is filled but its only the s orbital thats filled so its still reactive not so much as the Alkaline metals but still pretty reactive. Can someone explain it to me? Thanks!!
Back
Top