Doppler Effect of a 1-kilohertz sound

AI Thread Summary
The discussion revolves around calculating the observed frequency of a 1-kilohertz sound emitted from a source moving towards the observer at 0.9 times the speed of sound. The initial attempt at using the formula resulted in an incorrect frequency of 1.9 times the emitted frequency. The correct approach involves recognizing that the radial component of the source's velocity should be treated as negative in the Doppler effect formula, which accounts for the increase in frequency due to the source moving towards the observer. Participants clarify that the formula used initially was more suited for a moving listener rather than a moving source. The key takeaway is understanding the sign conventions in the Doppler effect equations to arrive at the correct observed frequency.
Fanaticus
Messages
17
Reaction score
0

Homework Statement


A source of 1-kilohertz sound is moving straight toward you at a speed .9 times the speed of sound. The frequency you receive is:


Homework Equations



\nu = \frac{v}{\lambda}

f' = \frac{v + v'}{v} f



The Attempt at a Solution



When I attempt the solution I get f' = \frac{v + .9v}{v} f = 1.9 f. However, that is not correct. The answer is 10 f. What am I missing?

Thx
 
Physics news on Phys.org
Your sign on the relative velocity probably. You could also work on the algebra that let you change f'=1.9*f into f=1.9*f'. That doesn't seem right either.
 
Well, the source is moving toward you. So the direction of the sound and the source should have the same sign. I don't know. I am missing something small I am sure, because this is a GRE question so it shouldn't take long to solve.
 
The formula I've got is f'=f*v/(v+vr). f' is observed frequency, f is emitted frequency. vr is radial component of source velocity. v is speed of sound. If it's moving towards you, you want an increase in frequency. That mean vr should be negative to make numerator larger than denominator.
 
Ok, thx. The formula I was using seems to be for a moving listener not a moving source.

I see how you justify making the vr negative. However it still seems odd since vr and v are going in the same direction, know what I mean?
 
v is the speed of sound. It's isn't going in any particular direction. vr is coming towards you. Apparently according to the conventions of that formula that makes vr negative.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...

Similar threads

Back
Top