How Long Should My Double Pipe Heat Exchanger Be for a 22kW Capacity?

AI Thread Summary
The discussion focuses on designing a double pipe heat exchanger for a capacity of 22kW, utilizing chilled water at 7°C and return water at 12°C. The user is facing challenges in determining accurate heat transfer coefficients, with discrepancies between lookup values and their own calculations leading to significant differences in required pipe length. The calculated coefficients of 1189 and 823 W/m²K suggest a much shorter length of 41m compared to the 104m derived from standard values. Questions arise regarding the use of thermal conductivity for water instead of copper and the feasibility of achieving specific temperature changes in the heat exchanger. Overall, the user seeks clarification on their calculations and assumptions for optimal design.
thestudent101
Messages
21
Reaction score
0
I'm trying to design a double pipe heat exchanger for two different water lines. One line is chilled water of approximately 7degC and the other is chilled water return from an air handling unit, of around 12degC. I want to design this heat exchange for a capacity of approximately 22kW. The part I'm having trouble with is the heat transfer coefficients of the water. I'm planning to have a counter-current flow, with the 12degC on the inside copper pipe, with the chilled water running the opposite direction surrounding the other copper pipe. I've assumed there is sufficient insulation around the outside of the system so the overall system is adiabatic. I've tried a few different methods of finding the heat transfer coefficients. One way is simply looking them up, and another calculating them from the Reynold's number and Nusselt number. Both have given me very different answers. My objective is to calculate how long this heat exchanger needs to be for it to have an overall capacity of 22kW. The flow rate can be up to 8L/s and the pipe sizes have no real constraints.

Here's some pictures of what I've calculated and assumed
https://ibb.co/mxz0T5
https://ibb.co/f1GQvk

When looking up the heat transfer coefficients, on the engineering toolbox it listed the coefficients for water-copper-water as 340-455W/m^2K http://www.engineeringtoolbox.com/overall-heat-transfer-coefficients-d_284.html

From my calculations though I've found the coefficients to be 1189 and 823W/m^2K, which changes the length required from 104m to 41m with the calculated coefficients. The engineering toolbox coefficients assume a "practically still fluid", but my velocities are only 0.33m/s and 0.11m/s. This just seems like a very big difference in length required for such low velocities, so just wondering if I went wrong somewhere in my calculations.

One other question, when calculating h1 & h2, I've used the thermal conductivity of water rather than the copper pipe. Is this correct?
 
Engineering news on Phys.org
Also if I wanted to increase the capacity of the heat exchanger, is there anything wrong with assuming the LMTD can be far smaller. If I have the air handling unit return water at 12degC and the chill water inlet at 7degC, is it practically possible to have the 12degC cooled to 7.5degC, and the 7degC chill water heated to 11.5degC?
 
I looked over your calculations, and they looked OK. I got a little lower values for the liquid side Nussult numbers, but not drastically lower. I got about 165 for the tube side using the Seider Tate equation. See what you get.

Using the thermal conductivity of water was the correct thing to do.
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Back
Top