Dynamics - the physics of tobogganing and forces at an angle

AI Thread Summary
The discussion focuses on calculating the acceleration of a child tobogganing down a 30° slope with a mass of 50.0 kg. In the absence of friction, the acceleration is determined to be 4.9 m/s², derived from the net force acting down the incline. When a coefficient of friction of 0.15 is introduced, the acceleration decreases to 3.63 m/s² after accounting for the force of kinetic friction. Participants clarify the designations of various forces involved in the calculations, such as gravitational force components and net force. The calculations and force definitions are confirmed to be accurate, ensuring a clear understanding of the physics involved.
L_0611
Messages
24
Reaction score
0

Homework Statement



A child is tobogganing down a hillside. The child and the toboggan together have a mass of 50.0kg. The slope is at an angle of 30.0° to the horizontal.
Assume that the positive y-direction is pointing in the direction of the normal force. Assume that the positive x-direction is down the incline.

Find the acceleration of the child

a) in the case where there is no friction

b) if the coefficient of friction is 0.15

The Attempt at a Solution



a) Fn + FgI = mgcosθ
= (50)(9.8)cos 30°
= 424N
Fnet = FgII = mgsinθ
= (50)(9.8)sin 30°
= 245 N (+ x-direction)
Fnet = ma
a = Fnet/m
= 245/50
= +4.9m/s/s
Therefor the child's acceleration in the case where there is no friction is 4.9 m/s/s.

b) FgI = 424 (- y-direction)
FgII = 245 (+ x-direction)

Fnet = FgII (+ x-direction) + Fk (- x-direction)

Fn = FgI = 424N (down)

Fk = μkFn
= (0.15)(424)
= 63.6N (- x-direction)

Fnet = FgII + Fk
= (+245)+(-63.6)
= +181.4N
Fnet =ma
a = Fnet/m
= 181.4/50
= +3.63m/s/s

Therefore the child's acceleration is +3.63 m/s/s if the coefficient of friction is 0.15.
 
Physics news on Phys.org
L_0611 said:

Homework Statement



A child is tobogganing down a hillside. The child and the toboggan together have a mass of 50.0kg. The slope is at an angle of 30.0° to the horizontal.
Assume that the positive y-direction is pointing in the direction of the normal force. Assume that the positive x-direction is down the incline.

Find the acceleration of the child

a) in the case where there is no friction

b) if the coefficient of friction is 0.15

The Attempt at a Solution



a) Fn + FgI = mgcosθ
= (50)(9.8)cos 30°
= 424N
Fnet = FgII = mgsinθ
= (50)(9.8)sin 30°
= 245 N (+ x-direction)
Fnet = ma
a = Fnet/m
= 245/50
= +4.9m/s/s
Therefor the child's acceleration in the case where there is no friction is 4.9 m/s/s.

b) FgI = 424 (- y-direction)
FgII = 245 (+ x-direction)

Fnet = FgII (+ x-direction) + Fk (- x-direction)

Fn = FgI = 424N (down)

Fk = μkFn
= (0.15)(424)
= 63.6N (- x-direction)

Fnet = FgII + Fk
= (+245)+(-63.6)
= +181.4N
Fnet =ma
a = Fnet/m
= 181.4/50
= +3.63m/s/s

Therefore the child's acceleration is +3.63 m/s/s if the coefficient of friction is 0.15.

I think your answers are right. I'm having a hard time puzzling through your designations for the various forces though. Could you explain them?
 
yeah I wasn't sure how to write them on the computer, basically I am following my book.
Fg - force of gravity
FgI - Fg(cosθ)
FgII = Fg(sinθ)
Fn - normal force
Fnet - net force
Fk - force of kinetic friction
m - mass
a - acceleration
g - gravity
μk - coefficient of kinetic friction

please let me know if I missed any or if you still have any questions. Thanks
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...

Similar threads

Back
Top